A Proof of Alon's Second Eigenvalue Conjecture and Related Problems
Seiten
2008
American Mathematical Society (Verlag)
978-0-8218-4280-5 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4280-5 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
A $d$-regular graph has largest or first (adjacency matrix) eigenvalue $/lambda 1=d$. Consider for an even $d/ge 4$, a random $d$-regular graph model formed from $d/2$ uniform, independent permutations on $/{1,/ldots,n/}$. The author shows that for any $/epsilon>0$ all eigenvalues aside from $/lambda 1=d$ are bounded by $2/sqrt{d-1}/;+/epsilon$ with probability $1-O(n{-/tau})$, where $/tau=/lceil /bigl(/sqrt{d-1}/;+1/bigr)/2 /rceil-1$. He also shows that this probability is at most $1-c/n{/tau'}$, for a constant $c$ and a $/tau'$ that is either $/tau$ or $/tau+1$ (""more often"" $/tau$ than $/tau+1$). He proves related theorems for other models of random graphs, including models with $d$ odd.
Introduction; Problems with the stand trace method; Background and terminology; Tangles; Walk sums and new types; The selective trace; Ramanujan functions; An expansion for some selective traces; Selective traces in graphs with (without) tangles; Strongly irreducible traces; A sidestepping lemma; Magnification theorem; Finishing the ${/cal G} {n,d}$ proofs; Finishing the proofs of the main theorems; Closing remarks; Glossary; Bibliography
Erscheint lt. Verlag | 30.12.2008 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 180 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
ISBN-10 | 0-8218-4280-3 / 0821842803 |
ISBN-13 | 978-0-8218-4280-5 / 9780821842805 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99 €
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €