Affine Bernstein Problems And Monge-ampere Equations
Seiten
2010
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-281-416-6 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-281-416-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Covers the interplay between geometry and partial differential equations (PDEs). This title focuses on variational problems and higher order PDEs for affine hypersurfaces.
In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampère equations.From the methodical point of view, it introduces the solution of certain Monge-Ampère equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings.
In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampère equations.From the methodical point of view, it introduces the solution of certain Monge-Ampère equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings.
Local Equiaffine Hypersurface Theory; Pogorelov's Theorem; Affine Maximal Hypersurfaces.
Erscheint lt. Verlag | 28.4.2010 |
---|---|
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 981-281-416-7 / 9812814167 |
ISBN-13 | 978-981-281-416-6 / 9789812814166 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €