Homological Algebra
Seiten
1999
|
1. Softcover reprint of the original 1st ed. 1994
Springer Berlin (Verlag)
978-3-540-65378-3 (ISBN)
Springer Berlin (Verlag)
978-3-540-65378-3 (ISBN)
Dieser EMS-Band bietet eine moderne Darstellung der homologischen Algebra und ihrer Anwendungen. Beide Autoren sind bekannte Forscher; Manin ist berühmt für seine Arbeiten in der algebraischen Geometrie und mathematischen Physik. Das Buch wendet sich an Forscher und Studenten höherer Semester in der Mathematik und an Physiker, die Methoden der algebraischen Geometrie und algebraischen Topologie verwenden.
DieserThis volume of the Encyclopaedia presents a modern approach to homological algebra, which is based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gel'fand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geomtry and algebraic topology.
DieserThis volume of the Encyclopaedia presents a modern approach to homological algebra, which is based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gel'fand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geomtry and algebraic topology.
1. Complexes and Cohomology.- 2. The Language of Categories.- 3. Homology Groups in Algebra and in Geometry.- 4. Derived Categories and Derived Functors.- 5. Triangulated Categories.- 6. Mixed Hodge Structures.- 7. Perverse Sheaves.- 8. D-Modules.- References.- Author Index.
Erscheint lt. Verlag | 20.5.1999 |
---|---|
Reihe/Serie | Encyclopaedia of Mathematical Sciences |
Übersetzer | S.I. Gelfand, Yu.I. Manin |
Zusatzinfo | V, 222 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 360 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebra • Algebraic Geometry • algebraic topology • category theory • cohomology • D-modules • D-Moduln • gemischte Hodgestrukturen • Hodge Theory • Homological algebra • Homologische Algebra • homologischen Algebra • Homology • Kategorietherorie • mixed Hodge structures • Sheaves |
ISBN-10 | 3-540-65378-3 / 3540653783 |
ISBN-13 | 978-3-540-65378-3 / 9783540653783 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €