Fundamentals of Data Mining in Genomics and Proteomics -

Fundamentals of Data Mining in Genomics and Proteomics

Buch | Hardcover
281 Seiten
2006 | 2007 ed.
Springer-Verlag New York Inc.
978-0-387-47508-0 (ISBN)
160,49 inkl. MwSt
As natural phenomena are being probed and mapped in ever-greater detail, scientists in genomics and proteomics are facing an exponentially growing vol­ ume of increasingly complex-structured data, information, and knowledge. Ex­ amples include data from microarray gene expression experiments, bead-based and microfluidic technologies, and advanced high-throughput mass spectrom­ etry. A fundamental challenge for life scientists is to explore, analyze, and interpret this information effectively and efficiently. To address this challenge, traditional statistical methods are being complemented by methods from data mining, machine learning and artificial intelligence, visualization techniques, and emerging technologies such as Web services and grid computing. There exists a broad consensus that sophisticated methods and tools from statistics and data mining are required to address the growing data analysis and interpretation needs in the life sciences. However, there is also a great deal of confusion about the arsenal of available techniques and how these should be used to solve concrete analysis problems. Partly this confusion is due to a lack of mutual understanding caused by the different concepts, languages, methodologies, and practices prevailing within the different disciplines.

to Genomic and Proteomic Data Analysis.- Design Principles for Microarray Investigations.- Pre-Processing DNA Microarray Data.- Pre-Processing Mass Spectrometry Data.- Visualization in Genomics and Proteomics.- Clustering — Class Discovery in the Post-Genomic Era.- Feature Selection and Dimensionality Reduction in Genomics and Proteomics.- Resampling Strategies for Model Assessment and Selection.- Classification of Genomic and Proteomic Data Using Support Vector Machines.- Networks in Cell Biology.- Identifying Important Explanatory Variables for Time-Varying Outcomes.- Text Mining in Genomics and Proteomics.

Zusatzinfo 68 Illustrations, black and white; XXII, 281 p. 68 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
ISBN-10 0-387-47508-7 / 0387475087
ISBN-13 978-0-387-47508-0 / 9780387475080
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90