Learning Theory -

Learning Theory

19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings
Buch | Softcover
XII, 660 Seiten
2006 | 2006
Springer Berlin (Verlag)
978-3-540-35294-5 (ISBN)
106,99 inkl. MwSt
lt;p>This book constitutes the refereed proceedings of the 19th Annual Conference on Learning Theory, COLT 2006, held in Pittsburgh, Pennsylvania, USA, June 2006.

The book presents 43 revised full papers together with 2 articles on open problems and 3 invited lectures. The papers cover a wide range of topics including clustering, un- and semi-supervised learning, statistical learning theory, regularized learning and kernel methods, query learning and teaching, inductive inference, and more.

Invited Presentations.- Random Multivariate Search Trees.- On Learning and Logic.- Predictions as Statements and Decisions.- Clustering, Un-, and Semisupervised Learning.- A Sober Look at Clustering Stability.- PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption.- Stable Transductive Learning.- Uniform Convergence of Adaptive Graph-Based Regularization.- Statistical Learning Theory.- The Rademacher Complexity of Linear Transformation Classes.- Function Classes That Approximate the Bayes Risk.- Functional Classification with Margin Conditions.- Significance and Recovery of Block Structures in Binary Matrices with Noise.- Regularized Learning and Kernel Methods.- Maximum Entropy Distribution Estimation with Generalized Regularization.- Unifying Divergence Minimization and Statistical Inference Via Convex Duality.- Mercer's Theorem, Feature Maps, and Smoothing.- Learning Bounds for Support Vector Machines with Learned Kernels.- Query Learning and Teaching.- On Optimal Learning Algorithms for Multiplicity Automata.- Exact Learning Composed Classes with a Small Number of Mistakes.- DNF Are Teachable in the Average Case.- Teaching Randomized Learners.- Inductive Inference.- Memory-Limited U-Shaped Learning.- On Learning Languages from Positive Data and a Limited Number of Short Counterexamples.- Learning Rational Stochastic Languages.- Parent Assignment Is Hard for the MDL, AIC, and NML Costs.- Learning Algorithms and Limitations on Learning.- Uniform-Distribution Learnability of Noisy Linear Threshold Functions with Restricted Focus of Attention.- Discriminative Learning Can Succeed Where Generative Learning Fails.- Improved Lower Bounds for Learning Intersections of Halfspaces.- Efficient Learning Algorithms Yield Circuit Lower Bounds.- OnlineAggregation.- Optimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition.- Aggregation and Sparsity Via ?1 Penalized Least Squares.- A Randomized Online Learning Algorithm for Better Variance Control.- Online Prediction and Reinforcement Learning I.- Online Learning with Variable Stage Duration.- Online Learning Meets Optimization in the Dual.- Online Tracking of Linear Subspaces.- Online Multitask Learning.- Online Prediction and Reinforcement Learning II.- The Shortest Path Problem Under Partial Monitoring.- Tracking the Best Hyperplane with a Simple Budget Perceptron.- Logarithmic Regret Algorithms for Online Convex Optimization.- Online Variance Minimization.- Online Prediction and Reinforcement Learning III.- Online Learning with Constraints.- Continuous Experts and the Binning Algorithm.- Competing with Wild Prediction Rules.- Learning Near-Optimal Policies with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path.- Other Approaches.- Ranking with a P-Norm Push.- Subset Ranking Using Regression.- Active Sampling for Multiple Output Identification.- Improving Random Projections Using Marginal Information.- Open Problems.- Efficient Algorithms for General Active Learning.- Can Entropic Regularization Be Replaced by Squared Euclidean Distance Plus Additional Linear Constraints.

Erscheint lt. Verlag 12.6.2006
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XII, 660 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 934 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Algorithm analysis and problem complexity • Algorithmic Learning • classification • Clustering stability • Computational Learning • Decision Theory • Game Theory • Inductive Inference • Kernel Method • Kernel Methods • learning methods • machine learning • Online Learning • online prediction • Optimization • Reinforcement Learning • stability • Statistical Learning • supervised learning • Support Vector Machine • Support Vector Machines
ISBN-10 3-540-35294-5 / 3540352945
ISBN-13 978-3-540-35294-5 / 9783540352945
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99