Learning Theory
Springer Berlin (Verlag)
978-3-540-35294-5 (ISBN)
The book presents 43 revised full papers together with 2 articles on open problems and 3 invited lectures. The papers cover a wide range of topics including clustering, un- and semi-supervised learning, statistical learning theory, regularized learning and kernel methods, query learning and teaching, inductive inference, and more.
Invited Presentations.- Random Multivariate Search Trees.- On Learning and Logic.- Predictions as Statements and Decisions.- Clustering, Un-, and Semisupervised Learning.- A Sober Look at Clustering Stability.- PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption.- Stable Transductive Learning.- Uniform Convergence of Adaptive Graph-Based Regularization.- Statistical Learning Theory.- The Rademacher Complexity of Linear Transformation Classes.- Function Classes That Approximate the Bayes Risk.- Functional Classification with Margin Conditions.- Significance and Recovery of Block Structures in Binary Matrices with Noise.- Regularized Learning and Kernel Methods.- Maximum Entropy Distribution Estimation with Generalized Regularization.- Unifying Divergence Minimization and Statistical Inference Via Convex Duality.- Mercer's Theorem, Feature Maps, and Smoothing.- Learning Bounds for Support Vector Machines with Learned Kernels.- Query Learning and Teaching.- On Optimal Learning Algorithms for Multiplicity Automata.- Exact Learning Composed Classes with a Small Number of Mistakes.- DNF Are Teachable in the Average Case.- Teaching Randomized Learners.- Inductive Inference.- Memory-Limited U-Shaped Learning.- On Learning Languages from Positive Data and a Limited Number of Short Counterexamples.- Learning Rational Stochastic Languages.- Parent Assignment Is Hard for the MDL, AIC, and NML Costs.- Learning Algorithms and Limitations on Learning.- Uniform-Distribution Learnability of Noisy Linear Threshold Functions with Restricted Focus of Attention.- Discriminative Learning Can Succeed Where Generative Learning Fails.- Improved Lower Bounds for Learning Intersections of Halfspaces.- Efficient Learning Algorithms Yield Circuit Lower Bounds.- OnlineAggregation.- Optimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition.- Aggregation and Sparsity Via ?1 Penalized Least Squares.- A Randomized Online Learning Algorithm for Better Variance Control.- Online Prediction and Reinforcement Learning I.- Online Learning with Variable Stage Duration.- Online Learning Meets Optimization in the Dual.- Online Tracking of Linear Subspaces.- Online Multitask Learning.- Online Prediction and Reinforcement Learning II.- The Shortest Path Problem Under Partial Monitoring.- Tracking the Best Hyperplane with a Simple Budget Perceptron.- Logarithmic Regret Algorithms for Online Convex Optimization.- Online Variance Minimization.- Online Prediction and Reinforcement Learning III.- Online Learning with Constraints.- Continuous Experts and the Binning Algorithm.- Competing with Wild Prediction Rules.- Learning Near-Optimal Policies with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path.- Other Approaches.- Ranking with a P-Norm Push.- Subset Ranking Using Regression.- Active Sampling for Multiple Output Identification.- Improving Random Projections Using Marginal Information.- Open Problems.- Efficient Algorithms for General Active Learning.- Can Entropic Regularization Be Replaced by Squared Euclidean Distance Plus Additional Linear Constraints.
Erscheint lt. Verlag | 12.6.2006 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 660 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 934 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • classification • Clustering stability • Computational Learning • Decision Theory • Game Theory • Inductive Inference • Kernel Method • Kernel Methods • learning methods • machine learning • Online Learning • online prediction • Optimization • Reinforcement Learning • stability • Statistical Learning • supervised learning • Support Vector Machine • Support Vector Machines |
ISBN-10 | 3-540-35294-5 / 3540352945 |
ISBN-13 | 978-3-540-35294-5 / 9783540352945 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich