Machine Learning Challenges
Springer Berlin (Verlag)
978-3-540-33427-9 (ISBN)
Evaluating Predictive Uncertainty Challenge.- Classification with Bayesian Neural Networks.- A Pragmatic Bayesian Approach to Predictive Uncertainty.- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees.- Estimating Predictive Variances with Kernel Ridge Regression.- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems.- Lessons Learned in the Challenge: Making Predictions and Scoring Them.- The 2005 PASCAL Visual Object Classes Challenge.- The PASCAL Recognising Textual Entailment Challenge.- Using Bleu-like Algorithms for the Automatic Recognition of Entailment.- What Syntax Can Contribute in the Entailment Task.- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment.- Textual Entailment Recognition Based on Dependency Analysis and WordNet.- Learning Textual Entailment on a Distance Feature Space.- An Inference Model for Semantic Entailment in Natural Language.- A Lexical Alignment Model for Probabilistic Textual Entailment.- Textual Entailment Recognition Using Inversion Transduction Grammars.- Evaluating Semantic Evaluations: How RTE Measures Up.- Partial Predicate Argument Structure Matching for Entailment Determination.- VENSES - A Linguistically-Based System for Semantic Evaluation.- Textual Entailment Recognition Using a Linguistically-Motivated Decision Tree Classifier.- Recognizing Textual Entailment Via Atomic Propositions.- Recognising Textual Entailment with Robust Logical Inference.- Applying COGEX to Recognize Textual Entailment.- Recognizing Textual Entailment: Is Word Similarity Enough?.
Erscheint lt. Verlag | 11.5.2006 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XIII, 462 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 813 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | algorithm • Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • Bayesian inference • classification • Cognition • Computational Learning • Forecasting • Heuristics • Image Recognition • Inductive Logic Programming • kernel-based learning • Learning Algorithms • machine learning • Natural Language Processing • Object recognition • Pattern Analysis • Segmentation • semantic inference • semantic language processing • Statistical Learning • Statistical Modelling • Syntax |
ISBN-10 | 3-540-33427-0 / 3540334270 |
ISBN-13 | 978-3-540-33427-9 / 9783540334279 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich