Equivalences of Classifying Spaces Completed at the Prime Two
Seiten
2006
American Mathematical Society (Verlag)
978-0-8218-3828-0 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-3828-0 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Proves that the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion.
We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $/mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.
We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $/mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.
Introduction Higher limits over orbit categories Reduction to simple groups A relative version of $/Lambda$-functors Subgroups which contribute to higher limits Alternating groups Groups of Lie type in characteristic two Classical groups of Lie type in odd characteristic Exceptional groups of Lie type in odd characteristic Sproadic groups Computations of $/textrm{lim}^1(/mathcal{Z}_G)$ Bibliography.
Erscheint lt. Verlag | 1.3.2006 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 234 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
ISBN-10 | 0-8218-3828-8 / 0821838288 |
ISBN-13 | 978-0-8218-3828-0 / 9780821838280 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Analysis und Lineare Algebra mit Querverbindungen
Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99 €
Versteckte Beiträge, die die Welt verändert haben
Buch | Hardcover (2023)
Springer (Verlag)
29,99 €