Walsh Equiconvergence of Complex Interpolating Polynomials
Seiten
2006
Springer-Verlag New York Inc.
978-1-4020-4174-7 (ISBN)
Springer-Verlag New York Inc.
978-1-4020-4174-7 (ISBN)
A collection of the various old and new results, centered around the following simple observation of J L Walsh. This book is particularly useful for researchers in approximation and interpolation theory.
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|
Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?–Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.
Reihe/Serie | Springer Monographs in Mathematics |
---|---|
Zusatzinfo | XIV, 298 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | Polynom |
ISBN-10 | 1-4020-4174-8 / 1402041748 |
ISBN-13 | 978-1-4020-4174-7 / 9781402041747 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €