Walsh Equiconvergence of Complex Interpolating Polynomials - Amnon Jakimovski, Ambikeshwar Sharma, József Szabados

Walsh Equiconvergence of Complex Interpolating Polynomials

Buch | Hardcover
298 Seiten
2006
Springer-Verlag New York Inc.
978-1-4020-4174-7 (ISBN)
53,49 inkl. MwSt
A collection of the various old and new results, centered around the following simple observation of J L Walsh. This book is particularly useful for researchers in approximation and interpolation theory.
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|

Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?–Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.

Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XIV, 298 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Schlagworte Polynom
ISBN-10 1-4020-4174-8 / 1402041748
ISBN-13 978-1-4020-4174-7 / 9781402041747
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich