Walsh Equiconvergence of Complex Interpolating Polynomials
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 2006
Springer (Verlag)
978-90-481-7060-9 (ISBN)
Springer (Verlag)
978-90-481-7060-9 (ISBN)
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|
Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?–Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.
Erscheint lt. Verlag | 30.11.2010 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics |
Zusatzinfo | XIV, 298 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 90-481-7060-5 / 9048170605 |
ISBN-13 | 978-90-481-7060-9 / 9789048170609 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €