Walsh Equiconvergence of Complex Interpolating Polynomials - Amnon Jakimovski, Ambikeshwar Sharma, József Szabados

Walsh Equiconvergence of Complex Interpolating Polynomials

Buch | Softcover
298 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2006
Springer (Verlag)
978-90-481-7060-9 (ISBN)
53,49 inkl. MwSt
1) but not in|z|? ?, then the di?erence between the Lagrange interpolant to it th in the n roots of unity and the partial sums of degree n? 1 of the Taylor 2 series about the origin, tends to zero in a larger disc of radius ? , although both operators converge to f(z) only for|z|

Lagrange Interpolation and Walsh Equiconvergence.- Hermite and Hermite-Birkhoff Interpolation and Walsh Equiconvergence.- A Generalization of the Taylor Series to Rational Functions and Walsh Equiconvergence.- Sharpness Results.- Converse Results.- Padé Approximation and Walsh Equiconvergence for Meromorphic Functions with ?–Poles.- Quantitative Results in the Equiconvergence of Approximation of Meromorphic Functions.- Equiconvergence for Functions Analytic in an Ellipse.- Walsh Equiconvergence Theorems for the Faber Series.- Equiconvergence on Lemniscates.- Walsh Equiconvergence and Equisummability.

Erscheint lt. Verlag 30.11.2010
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XIV, 298 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 90-481-7060-5 / 9048170605
ISBN-13 978-90-481-7060-9 / 9789048170609
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99