Für diesen Artikel ist leider kein Bild verfügbar.

Analysis of Variance for Functional Data

(Autor)

Buch | Softcover
410 Seiten
2024
Chapman & Hall/CRC (Verlag)
978-1-032-92039-9 (ISBN)
56,10 inkl. MwSt
This self-contained book presents up-to-date hypothesis testing methods for functional data analysis. Useful for statistical researchers and practitioners analyzing functional data, it gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The book covers the reconstruction of
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional linear models with functional responses, ill-conditioned functional linear models, diagnostics of functional observations, heteroscedastic ANOVA for functional data, and testing equality of covariance functions. Although the methodologies presented are designed for curve data, they can be extended to surface data.

Useful for statistical researchers and practitioners analyzing functional data, this self-contained book gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The author provides a number of simple methods for functional hypothesis testing. He discusses pointwise, L2-norm-based, F-type, and bootstrap tests.

Assuming only basic knowledge of statistics, calculus, and matrix algebra, the book explains the key ideas at a relatively low technical level using real data examples. Each chapter also includes bibliographical notes and exercises. Real functional data sets from the text and MATLAB codes for analyzing the data examples are available for download from the author’s website.

Jin-Ting Zhang is an associate professor in the Department of Statistics and Applied Probability at the National University of Singapore. He has published extensively and has served on the editorial boards of several international statistical journals. He is the coauthor of Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effect Modelling Approaches and the coeditor of Advances in Statistics: Proceedings of the Conference in Honor of Professor Zhidong Bai on His 65th Birthday.

Introduction. Nonparametric Smoothers for a Single Curve. Reconstruction of Functional Data. Stochastic Processes. ANOVA for Functional Data. Linear Models with Functional Responses. Ill-Conditioned Functional Linear Models. Diagnostics of Functional Observations. Heteroscedastic ANOVA for Functional Data. Test of Equality of Covariance Functions. Bibliography. Index.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Monographs on Statistics and Applied Probability
Zusatzinfo 80 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 757 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Biologie
ISBN-10 1-032-92039-4 / 1032920394
ISBN-13 978-1-032-92039-9 / 9781032920399
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
32,99
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99