Graph Based Multimedia Analysis -  Ananda S Chowdhury,  Abhimanyu Sahu

Graph Based Multimedia Analysis (eBook)

eBook Download: PDF | EPUB
2024 | 1. Auflage
370 Seiten
Elsevier Science (Verlag)
978-0-443-21486-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
130,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Graph Based Multimedia Analysis applies concepts from graph theory to the problems of analyzing overabundant video data. Video data can be quite diverse: exocentric (captured by a standard camera) or egocentric (captured by a wearable device like Google Glass); of various durations (ranging from a few seconds to several hours); and could be from a single source or multiple sources. Efficient extraction of important information from such a large class of diverse video data can be overwhelming. The book, with its rich repertoire of theoretically elegant solutions, from graph theory in conjunction with deep learning, constrained optimization, and game theory, empowers the audience to achieve tasks like obtaining concise yet useful summaries and precisely recognizing single as well as multiple actions in a computationally efficient manner. The book provides a unique treatise on topics like egocentric video analysis and scalable video processing. - Addresses a number of challenging state-of-the-art problems in multimedia analysis like summarization, co-summarization, and action recognition - Handles a wide class of video with different genres, durations, and numbers - Applies a class of theoretically rich algorithms from the discipline of graph theory, in conjunction with deep learning, constrained optimization and game theory - Includes thorough complexity analyses of the proposed solutions, and an appendix containing implementable source codes

Ananda S. Chowdhury is a Professor and former Head in the Department of Electronics and Telecommunication Engineering at Jadavpur University, Kolkata, India, where he leads the Imaging, Vision and Pattern Recognition group. He received his Ph.D. degree in Computer Science from The University of Georgia, Athens, GA, USA, and was a Postdoctoral Fellow at National Institutes of Health, Bethesda, MD, USA. His research interests include computer vision, pattern recognition, biomedical image/ signal processing, and multimedia analysis. He is a Senior Member of IEEE, a Member of the International Association for Pattern Recognition Technical Committee (IAPR TC) on Graph based Representations (GbR), and a life member of the Indian Unit for Pattern Recognition and Artificial Intelligence (IUPRAI). He has held invited academic visits to different universities across France, Germany, Norway, Italy, The Netherlands, Singapore and Brazil. Dr. Chowdhury serves/has served on the editorial boards of IEEE Transactions on Image Processing, Pattern Recognition Letters, IEEE Signal Processing Letters, and Springer Nature Computer Science. His Erdös Number is two.
Graph Based Multimedia Analysis applies concepts from graph theory to the problems of analyzing overabundant video data. Video data can be quite diverse: exocentric (captured by a standard camera) or egocentric (captured by a wearable device like Google Glass); of various durations (ranging from a few seconds to several hours); and could be from a single source or multiple sources. Efficient extraction of important information from such a large class of diverse video data can be overwhelming. The book, with its rich repertoire of theoretically elegant solutions, from graph theory in conjunction with deep learning, constrained optimization, and game theory, empowers the audience to achieve tasks like obtaining concise yet useful summaries and precisely recognizing single as well as multiple actions in a computationally efficient manner. The book provides a unique treatise on topics like egocentric video analysis and scalable video processing. - Addresses a number of challenging state-of-the-art problems in multimedia analysis like summarization, co-summarization, and action recognition- Handles a wide class of video with different genres, durations, and numbers- Applies a class of theoretically rich algorithms from the discipline of graph theory, in conjunction with deep learning, constrained optimization and game theory- Includes thorough complexity analyses of the proposed solutions, and an appendix containing implementable source codes
Erscheint lt. Verlag 7.8.2024
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
ISBN-10 0-443-21486-7 / 0443214867
ISBN-13 978-0-443-21486-8 / 9780443214868
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 14,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 69,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
50,39
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39