The Structure of Pro-Lie Groups

Buch | Hardcover
XXII, 818 Seiten
2023 | 2. Auflage
EMS Press (Verlag)
978-3-98547-048-8 (ISBN)

Lese- und Medienproben

The Structure of Pro-Lie Groups - Karl H. Hofmann, Sidney A. Morris
119,00 inkl. MwSt
Lie groups were introduced in 1870 by the Norwegian mathematician Sophus Lie. A century later Jean Dieudonné quipped that Lie groups had moved to the center of mathematics and that one cannot undertake anything without them.
A pro-Lie group is a complete topological group G in which every identity neighborhood U of G contains a normal subgroup N such that the quotient G/N is a Lie group. Every locally compact connected topological group and every compact group is a pro-Lie group. While the class of locally compact groups is not closed under the formation of arbitrary products, the class of pro-Lie groups is.
For half a century, locally compact pro-Lie groups have drifted through the literature, yet this is the first book which systematically treats the Lie theory and the structure theory of pro-Lie groups irrespective of local compactness. So it fits very well into that current trend which addresses infinite dimensional Lie groups. The results of this text are based on a theory of pro-Lie algebras which parallels the structure theory of finite dimensional real Lie algebras to an astonishing degree even though it has to overcome technical obstacles.
A topological group is said to be almost connected if the quotient group of its connected components is compact. This book exposes a Lie theory of almost connected pro-Lie groups (and hence of almost connected locally compact groups) and illuminates the variety of ways in which their structure theory reduces to that of compact groups on the one hand and of finite dimensional Lie groups on the other. It is therefore a continuation of the authors’ monograph on the structure of compact groups (1998, 2006, 2014, 2020, 2023) and is an invaluable tool for researchers in topological groups, Lie theory, harmonic analysis and representation theory. It is written to be accessible to advanced graduate students wishing to study this fascinating and important area of research, which has so many fruitful interactions with other fields of mathematics.

Technische Universität Darmstadt, Germany; Tulane University, New Orleans, USA

La Trobe University, Bundoora; and Federation University Australia, Ballarat, Australia

Erscheinungsdatum
Reihe/Serie EMS Tracts in Mathematics ; 36
Verlagsort Berlin
Sprache englisch
Maße 165 x 235 mm
Themenwelt Mathematik / Informatik Mathematik
Schlagworte completenes • exponential function • Lie theory of connected and almost connected pro-Lie groups • local Iwasawa splitting • open mapping theorems Levi–Malcev splitting • pro-Lie algebras • pro-Lie groups • quotient groups • structure theory of locally compact groups
ISBN-10 3-98547-048-0 / 3985470480
ISBN-13 978-3-98547-048-8 / 9783985470488
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
32,99
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99