Multiplicative Number Theory I - Hugh L. Montgomery, Robert C. Vaughan

Multiplicative Number Theory I

Classical Theory
Buch | Hardcover
572 Seiten
2006
Cambridge University Press (Verlag)
978-0-521-84903-6 (ISBN)
118,45 inkl. MwSt
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In this 2006 text, the authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature.
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.

Hugh Montgomery is a Professor of Mathematics at the University of Michigan. Robert Vaughan is a Professor of Mathematics at Pennsylvannia State University.

Preface; Notation; 1. Dirichlet series-I; 2. The elementary theory of arithmetic functions; 3. Principles and first examples of sieve methods; 4. Primes in arithmetic progressions-I; 5. Dirichlet series-II; 6. The prime number theorem; 7. Applications of the prime number theorem; 8. Further discussion of the prime number theorem; 9. Primitive characters and Gauss sums; 10. Analytic properties of the zeta function and L-functions; 11. Primes in arithmetic progressions-II; 12. Explicit formulae; 13. Conditional estimates; 14. Zeros; 15. Oscillations of error terms; Appendix A. The Riemann-Stieltjes integral; Appendix B. Bernoulli numbers and the Euler-MacLaurin summation formula; Appendix C. The gamma function; Appendix D. Topics in harmonic analysis.

Erscheint lt. Verlag 16.11.2006
Reihe/Serie Cambridge Studies in Advanced Mathematics
Verlagsort Cambridge
Sprache englisch
Maße 162 x 227 mm
Gewicht 1000 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 0-521-84903-9 / 0521849039
ISBN-13 978-0-521-84903-6 / 9780521849036
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
32,99
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99