Foundations and Advances in Data Mining -

Foundations and Advances in Data Mining

WESLEY CHU, Tsau Young Lin (Herausgeber)

Buch | Hardcover
X, 342 Seiten
2005 | 2005
Springer Berlin (Verlag)
978-3-540-25057-9 (ISBN)
160,49 inkl. MwSt

With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.

The Mathematics of Learning.- Logical Regression Analysis: From Mathematical Formulas to Linguistic Rules.- A Feature/Attribute Theory for Association Mining and Constructing the Complete Feature Set.- A New Theoretical Framework for K-means-type Clustering.- Clustering via Decision Tree Construction.- Incremental Mining on Association Rules.- Mining Association Rules from Tabular Data Guided by Maximal Frequent Itemsets.- Sequential Pattern Mining by Pattern-Growth: Principles and Extensions.- Web Page Classification.- Web Mining - Concepts, Applications, and Research Directions.- Privacy-Preserving Data Mining.

Erscheint lt. Verlag 15.9.2005
Reihe/Serie Studies in Fuzziness and Soft Computing
Zusatzinfo X, 342 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 234 mm
Gewicht 645 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Technik
Schlagworte Analysis • classification • Construction • Data Mining • Datenkomprimierung • Foundations of Data Mining • Information and Communication, Circuits • learning • Mathematics of Learning • pattern mining • Regression • Web mining • Web Mining, Pattern Mining
ISBN-10 3-540-25057-3 / 3540250573
ISBN-13 978-3-540-25057-9 / 9783540250579
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99