Machine Learning Contests: A Guidebook - Wang He, Peng Liu, Qian Qian

Machine Learning Contests: A Guidebook (eBook)

, , (Autoren)

eBook Download: PDF
2023 | 1st ed. 2023
XIX, 393 Seiten
Springer Nature Singapore (Verlag)
978-981-99-3723-3 (ISBN)
Systemvoraussetzungen
58,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book systematically introduces the competitions in the field of algorithm and machine learning. The first author of the book has won 5 championships and 5 runner-ups in domestic and international algorithm competitions.

Firstly, it takes common competition scenarios as a guide by giving the main processes of using machine learning to solve real-world problems, namely problem modelling, data exploration, feature engineering, model training. And then lists the main points of difficulties, general ideas with solutions in the whole process. Moreover, this book comprehensively covers several common problems in the field of machine learning competitions such as recommendation, temporal prediction, advertising, text computing, etc.

The authors, also knew as 'competition professionals', will explain the actual cases in detail and teach you various processes, routines, techniques and strategies, which is a rare treasure book for all competition enthusiasts. It is very suitable for readers who are interested in algorithm competitions and deep learning algorithms in practice, or computer-related majors.



Wang He Currently works in Xiaomi's commercial algorithm department, engaged in the research and development of ad recommendation in app stores. He has participated in many domestic and international algorithm competitions from 2018 to 2020, and won 5 championships and 5 runner-ups, and was the champion of Tencent Advertising Algorithm Competition in 2019 and 2020. He graduated from the School of Computer Science of Wuhan University with a master's degree, and his research interest is focusing on graph data mining.

Peng Liu is an algorithm engineer at Huawei Technologies Co., Ltd. and is engaged in the research and development of algorithms in the field of telecom operators and intelligent operation and maintenance. he graduated from Wuhan University in 2016 with a bachelor's degree in mathematics base class, and was admitted to the Department of Automation at the University of Science and Technology of China. His research interests during his master's degree are complex networks and machine learning, and he has won several awards in machine learning-related competitions since 2018.

Qian Qian is the Software Algorithm Expert, working on research and development of 3d point cloud perception algorithm for Innovusion. He studied at Georgia Tech University in the U.S., and his research interests include machine learning, deep learning, natural language processing, point cloud, etc. 


This book systematically introduces the competitions in the field of algorithm and machine learning. The first author of the book has won 5 championships and 5 runner-ups in domestic and international algorithm competitions.Firstly, it takes common competition scenarios as a guide by giving the main processes of using machine learning to solve real-world problems, namely problem modelling, data exploration, feature engineering, model training. And then lists the main points of difficulties, general ideas with solutions in the whole process. Moreover, this book comprehensively covers several common problems in the field of machine learning competitions such as recommendation, temporal prediction, advertising, text computing, etc.The authors, also knew as "e;competition professionals , will explain the actual cases in detail and teach you various processes, routines, techniques and strategies, which is a rare treasure book for all competition enthusiasts. It is very suitable for readers who are interested in algorithm competitions and deep learning algorithms in practice, or computer-related majors.
Erscheint lt. Verlag 11.10.2023
Zusatzinfo XIX, 393 p. 1 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Schlagworte advertising algorithm • algorithm competition • complete code resources • Data Science • feature engineering • Kaggle competition • machine learning • scoring skills
ISBN-10 981-99-3723-X / 981993723X
ISBN-13 978-981-99-3723-3 / 9789819937233
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99