Human-in-the-loop Learning and Control for Robot Teleoperation -  Jing Luo,  Ning Wang,  Chenguang Yang

Human-in-the-loop Learning and Control for Robot Teleoperation (eBook)

eBook Download: EPUB
2023 | 1. Auflage
266 Seiten
Elsevier Science (Verlag)
978-0-323-95843-1 (ISBN)
Systemvoraussetzungen
131,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Human-in-the-loop Learning and Control for Robot Teleoperation presents recent, research progress on teleoperation and robots, including human-robot interaction, learning and control for teleoperation with many extensions on intelligent learning techniques. The book integrates cutting-edge research on learning and control algorithms of robot teleoperation, neural motor learning control, wave variable enhancement, EMG-based teleoperation control, and other key aspects related to robot technology, presenting implementation tactics, adequate application examples and illustrative interpretations. Robots have been used in various industrial processes to reduce labor costs and improve work efficiency. However, most robots are only designed to work on repetitive and fixed tasks, leaving a gap with the human desired manufacturing effect. - Introduces research progress and technical contributions on teleoperation robots, including intelligent human-robot interactions and learning and control algorithms for teleoperation - Presents control strategies and learning algorithms to a teleoperation framework to enhance human-robot shared control, bi-directional perception and intelligence of the teleoperation system - Discusses several control and learning methods, describes the working implementation and shows how these methods can be applied to a specific and practical teleoperation system

Dr. Chenguang Yang is a Professor of Robotics with University of the West of England, and leader of Robot Teleoperation Group at the Bristol Robotics Laboratory. He received his Ph.D. degree in control engineering from the National University of Singapore in 2010, and postdoctoral training in human robotics from Imperial College London, U.K. His research interests lie in human-robot interaction and intelligent system design. Dr. Yang was awarded the EU Marie Curie International Incoming Fellowship, the U.K. EPSRC UKRI Innovation Fellowship, and the Best Paper Award of IEEE TRANSACTIONS ON ROBOTICS as well as over ten international conference best paper awards. He is a Co-Chair of the Technical Committee on Bio-Mechatronics and Bio-Robotics Systems, IEEE Systems, Man, and Cybernetics Society; and a Co-Chair of the Technical Committee on Collaborative Automation for Flexible Manufacturing, IEEE Robotics and Automation Society. He serves as an Associate Editor of a number of IEEE Transactions and other international leading journals.
Human-in-the-loop Learning and Control for Robot Teleoperation presents recent, research progress on teleoperation and robots, including human-robot interaction, learning and control for teleoperation with many extensions on intelligent learning techniques. The book integrates cutting-edge research on learning and control algorithms of robot teleoperation, neural motor learning control, wave variable enhancement, EMG-based teleoperation control, and other key aspects related to robot technology, presenting implementation tactics, adequate application examples and illustrative interpretations. Robots have been used in various industrial processes to reduce labor costs and improve work efficiency. However, most robots are only designed to work on repetitive and fixed tasks, leaving a gap with the human desired manufacturing effect. - Introduces research progress and technical contributions on teleoperation robots, including intelligent human-robot interactions and learning and control algorithms for teleoperation- Presents control strategies and learning algorithms to a teleoperation framework to enhance human-robot shared control, bi-directional perception and intelligence of the teleoperation system- Discusses several control and learning methods, describes the working implementation and shows how these methods can be applied to a specific and practical teleoperation system
EPUBEPUB (Adobe DRM)
Größe: 39,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99