Symplectic Integration of Stochastic Hamiltonian Systems - Jialin Hong, Liying Sun

Symplectic Integration of Stochastic Hamiltonian Systems

, (Autoren)

Buch | Softcover
300 Seiten
2023 | 1st ed. 2022
Springer Verlag, Singapore
978-981-19-7669-8 (ISBN)
74,89 inkl. MwSt
This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems.



The problems considered in this book are related to several fascinating research hotspots: numerical analysis, stochastic analysis, ergodic theory, stochastic ordinary and partial differential equations, and rough path theory. This book will appeal to researchers who are interested in these topics.

Jialin Hong is a professor at the Chinese Academy of Sciences. He obtained his Ph.D. in 1994 at Jilin University. He works in various directions including structure-preserving algorithms for dynamical systems involving symplectic and multi-symplectic methods for Hamiltonian ODEs and PDEs, Lie group methods and applications, numerical dynamics including chaos, bifurcations for discrete systems, numerical methods for stochastic ordinary differential systems, stochastic partial differential equations and backward stochastic differential equations, almost periodic dynamical systems, and ergodic theory. Liying Sun is a postdoctoral researcher in the Chinese Academy of Sciences. She works in stochastic differential equations and their numerical methods. She has been investigating regularity properties and strong convergence of numerical approximations for stochastic partial differential equations, weak convergence and numerical longtime behaviors of numerical approximations for stochastic partial differential equations, structure-preserving numerical methods including symplectic integrators and energy-preserving integrators for stochastic Hamiltonian system.

Chapter 1 Deterministic Hamiltonian System.- Chapter 2 Stochastic Hamiltonian System.- Chapter 3 Stochastic Structure Preserving Numerical Integrators.- Chapter 4 Stochastic Modified Equation and Its Applications.- Chapter 5 Stochastic Hamiltonian Partial Differential Equation.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics ; 2314
Zusatzinfo 1 Illustrations, black and white; XII, 300 p. 1 illus.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Generating function • invariant measure • large derivative principle • modified equation • rough path • stochastic Hamiltonian partial differential equation • stochastic Hamiltonian system • symplectic integrator
ISBN-10 981-19-7669-4 / 9811976694
ISBN-13 978-981-19-7669-8 / 9789811976698
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99