Means of Hilbert Space Operators
Springer Berlin (Verlag)
978-3-540-40680-8 (ISBN)
The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.
Introduction.- Double integral transformations.- Means of operators and their comparison.- Convergence of means.- A-L-G interpolation means Ma.- Heinz-type means Aa.- Binomial means Ba.- Certain alternating sums of operators.- Appendices.- References.- Index.
Erscheint lt. Verlag | 19.8.2003 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VIII, 156 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 250 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | 47A30, 47A64, 15A60 • double integral transformation • Hilbert-Räume • hilbert space • Hilbert space operator • integral transform • Interpolation • matrix theory • mean of operators • Schur multiplier • unitarily invariant norm |
ISBN-10 | 3-540-40680-8 / 3540406808 |
ISBN-13 | 978-3-540-40680-8 / 9783540406808 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich