An Introduction to Nonparametric Statistics
Seiten
2022
Chapman & Hall/CRC (Verlag)
978-0-367-56438-4 (ISBN)
Chapman & Hall/CRC (Verlag)
978-0-367-56438-4 (ISBN)
- Titel wird leider nicht erscheinen
- Artikel merken
This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression.
Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included.
Features
Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented
Tests are inverted to produce estimates and confidence intervals
Multivariate tests are explored
Techniques reflecting the dependence of a response variable on explanatory variables are presented
Density estimation is explored
The bootstrap and jackknife are discussed
This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression.
Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included.
Features
Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented
Tests are inverted to produce estimates and confidence intervals
Multivariate tests are explored
Techniques reflecting the dependence of a response variable on explanatory variables are presented
Density estimation is explored
The bootstrap and jackknife are discussed
This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.
John Kolassa is Professor of Statistics and Biostatistics, Rutgers, the State University of New Jersey.
1. Background 2. One-Sample Nonparametric Inference 3. Two-Sample Testing 4. Methods for Three or More Groups 5. Group Differences with Blocking 6. Bivariate Methods 7. Multivariate Analysis 8. Density Estimation 9. Regression Function Estimates 10. Resampling Techniques Appendices
Erscheint lt. Verlag | 30.4.2022 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Texts in Statistical Science |
Zusatzinfo | 22 Tables, black and white; 35 Line drawings, black and white; 35 Illustrations, black and white |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
ISBN-10 | 0-367-56438-6 / 0367564386 |
ISBN-13 | 978-0-367-56438-4 / 9780367564384 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung für Wirtschafts- und Sozialwissenschaftler
Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95 €