An Introduction to Nonparametric Statistics - John E. Kolassa

An Introduction to Nonparametric Statistics

(Autor)

Buch | Softcover
212 Seiten
2022
Chapman & Hall/CRC (Verlag)
978-0-367-56438-4 (ISBN)
52,35 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression.

Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included.

Features






Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented



Tests are inverted to produce estimates and confidence intervals



Multivariate tests are explored



Techniques reflecting the dependence of a response variable on explanatory variables are presented



Density estimation is explored



The bootstrap and jackknife are discussed

This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

John Kolassa is Professor of Statistics and Biostatistics, Rutgers, the State University of New Jersey.

1. Background 2. One-Sample Nonparametric Inference 3. Two-Sample Testing 4. Methods for Three or More Groups 5. Group Differences with Blocking 6. Bivariate Methods 7. Multivariate Analysis 8. Density Estimation 9. Regression Function Estimates 10. Resampling Techniques Appendices

Erscheint lt. Verlag 30.4.2022
Reihe/Serie Chapman & Hall/CRC Texts in Statistical Science
Zusatzinfo 22 Tables, black and white; 35 Line drawings, black and white; 35 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
ISBN-10 0-367-56438-6 / 0367564386
ISBN-13 978-0-367-56438-4 / 9780367564384
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95