Finsler and Lagrange Geometries
Springer-Verlag New York Inc.
978-1-4020-1390-4 (ISBN)
Section 1. Lagrange and Hamilton Geometry and Applications in Control.- Curvature tensors on complex Lagrange spaces.- Symplectic structures and Lagrange geometry.- A geometrical foundation for Seismic ray theory based on modern Finsler geometry.- On a problem of M. Matsumoto and Z. Shen.- Metrical homogeneous 2 — ? structures determined by a Finsler metric in tangent bundle.- Nonholonomic frames for Finsler spaces with (?, ?) metrics.- Invariant submanifolds of a Kenmotsu manifold.- The Gaussian curvature for the indicatrix of a generalized Lagrange space.- Infinitesimal projective transformations on tangent bundles.- Conformal transformations in Finsler geometry.- Induced vector fields in a hypersurface of Riemannian tangent bundles.- On a normal cosymplectic manifold.- The almost Hermitian structures determined by the Riemannian structures on the tangent bundle.- On the semispray of nonlinear connections in rheonomic Lagrange geometry.- ?dual complex Lagrange and Hamilton spaces.- Dirac operators on holomorphic bundles.- The generalised singular Finsler spaces.- n-order dynamical systems and associated geometrical structures.- The variational problem for Finsler spaces with (?, ?) — metric.- On projectively flat Finsler spheres (Remarks on a theorem of R.L. Bryant).- On the corrected form of an old result:necessary and sufficient conditions of a Randers space to be of constant curvature.- On the almost Finslerian Lagrange space of second order with (?, ?) metric.- Remarkable natural almost parakaehlerian structures on the tangent bundle.- Intrinsic geometrization of the variational Hamiltonian calculus.- Finsler spaces of Riemann-Minkowski type.- Finsler- Lagrange- Hamilton structures associated to control systems.- Preface Section 2.- Section 2.Applications to Physics.- Contraforms on pseudo-Riemannian manifolds.- Finslerian (?, ?)—metrics in weak gravitational models.- Applications of adapted frames to the geometry of black holes.- Implications of homogeneity in Miron’s sense in gauge theories of second order.- The free geodesic connection and applications to physical field theories.- The geometry of non-inertial frames.- Self-duality equations for gauge theories.
Erscheint lt. Verlag | 31.7.2003 |
---|---|
Zusatzinfo | XVI, 324 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 210 x 297 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
ISBN-10 | 1-4020-1390-6 / 1402013906 |
ISBN-13 | 978-1-4020-1390-4 / 9781402013904 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich