Applied Regression Modeling - Iain Pardoe

Applied Regression Modeling

(Autor)

Buch | Hardcover
336 Seiten
2021 | 3rd edition
John Wiley & Sons Inc (Verlag)
978-1-119-61586-6 (ISBN)
131,56 inkl. MwSt
Master the fundamentals of regression without learning calculus with this one-stop resource

The newly and thoroughly revised 3rd Edition of Applied Regression Modeling delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.

The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content. Applied Regression Modeling covers a wide variety of topics, like:



Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction
Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically
Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls
Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches

Perfect for students of any undergraduate statistics course in which regression analysis is a main focus, Applied Regression Modeling also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Iain Pardoe, PhD, received his PhD in Statistics from the University of Minnesota. He is an Online Instructor of the "Regression Methods" graduate course at Pennsylvania State University. He also teaches "Biostatistics," "Mathematics for Computing Science," and "Mathematics for Teachers" at Thompson Rivers University and was previously an Associate Professor at the University of Oregon.

Preface xi

Acknowledgments xv

Introduction xvii

I.1 Statistics in Practice xvii

I.2 Learning Statistics xix

About the Companion Website xxi

1 Foundations 1

1.1 Identifying and Summarizing Data 2

1.2 Population Distributions 5

1.3 Selecting Individuals at Random—Probability 9

1.4 Random Sampling 11

1.4.1 Central limit theorem—normal version 12

1.4.2 Central limit theorem—t-version 14

1.5 Interval Estimation 16

1.6 Hypothesis Testing 20

1.6.1 The rejection region method 20

1.6.2 The p-value method 23

1.6.3 Hypothesis test errors 27

1.7 Random Errors and Prediction 28

1.8 Chapter Summary 31

Problems 31

2 Simple Linear Regression 39

2.1 Probability Model for X and Y 40

2.2 Least Squares Criterion 45

2.3 Model Evaluation 50

2.3.1 Regression standard error 51

2.3.2 Coefficient of determination—R2 53

2.3.3 Slope parameter 57

2.4 Model Assumptions 65

2.4.1 Checking the model assumptions 66

2.4.2 Testing the model assumptions 72

2.5 Model Interpretation 72

2.6 Estimation and Prediction 74

2.6.1 Confidence interval for the population mean, E(Y) 74

2.6.2 Prediction interval for an individual Y -value 75

2.7 Chapter Summary 79

2.7.1 Review example 80

Problems 83

3 Multiple Linear Regression 95

3.1 Probability Model for (X1, X2, . . .) and Y 96

3.2 Least Squares Criterion 100

3.3 Model Evaluation 106

3.3.1 Regression standard error 106

3.3.2 Coefficient of determination—R2 108

3.3.3 Regression parameters—global usefulness test 115

3.3.4 Regression parameters—nested model test 120

3.3.5 Regression parameters—individual tests 127

3.4 Model Assumptions 137

3.4.1 Checking the model assumptions 137

3.4.2 Testing the model assumptions 143

3.5 Model Interpretation 145

3.6 Estimation and Prediction 146

3.6.1 Confidence interval for the population mean, E(Y ) 147

3.6.2 Prediction interval for an individual Y -value 148

3.7 Chapter Summary 151

Problems 152

4 Regression Model Building I 159

4.1 Transformations 161

4.1.1 Natural logarithm transformation for predictors 161

4.1.2 Polynomial transformation for predictors 167

4.1.3 Reciprocal transformation for predictors 171

4.1.4 Natural logarithm transformation for the response 175

4.1.5 Transformations for the response and predictors 179

4.2 Interactions 184

4.3 Qualitative Predictors 191

4.3.1 Qualitative predictors with two levels 192

4.3.2 Qualitative predictors with three or more levels 201

4.4 Chapter Summary 210

Problems 211

5 Regression Model Building II 221

5.1 Influential Points 223

5.1.1 Outliers 223

5.1.2 Leverage 228

5.1.3 Cook’s distance 230

5.2 Regression Pitfalls 234

5.2.1 Nonconstant variance 234

5.2.2 Autocorrelation 237

5.2.3 Multicollinearity 242

5.2.4 Excluding important predictor variables 246

5.2.5 Overfitting 249

5.2.6 Extrapolation 250

5.2.7 Missing data 252

5.2.8 Power and sample size 255

5.3 Model Building Guidelines 256

5.4 Model Selection 259

5.5 Model Interpretation Using Graphics 263

5.6 Chapter Summary 270

Problems 272

Notation and Formulas 287

Univariate Data 287

Simple Linear Regression 288

Multiple Linear Regression 289

Bibliography 293

Glossary 299

Index 305

6 Case studies 533

6.1 Home prices 533

6.1.1 Data description 533

6.1.2 Exploratory data analysis 536

6.1.3 Regression model building 539

6.1.4 Results and conclusions 542

6.1.5 Further questions 551

6.2 Vehicle fuel efficiency 552

6.2.1 Data description 552

6.2.2 Exploratory data analysis 554

6.2.3 Regression model building 556

6.2.4 Results and conclusions 557

6.2.5 Further questions 567

6.3 Pharmaceutical patches 568

6.3.1 Data description 568

6.3.2 Exploratory data analysis 569

6.3.3 Regression model building 570

6.3.4 Model diagnostics 573

6.3.5 Results and conclusions 574

6.3.6 Further questions 578

7 Extensions 579

7.1 Generalized linear models 581

7.1.1 Logistic regression 582

7.1.2 Poisson regression 594

7.2 Discrete choice models 602

7.3 Multilevel models 609

7.4 Bayesian modeling 614

7.4.1 Frequentist inference 614

7.4.2 Bayesian inference 616

Problems 620

A Computer software help 623

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

B Critical values for t-distributions 631

C Notation and formulas 635

C.1 Univariate data 635

C.2 Simple linear regression 637

C.3 Multiple linear regression 639

D Mathematics refresher 643

D.1 The natural logarithm and exponential functions 643

D.2 Rounding and accuracy 644

E Multiple Linear Regression Using Matrices 647

E.1 Vectors and matrices 647

E.2 Matrix multiplication 649

E.3 Matrix addition 652

E.4 Transpose of a matrix 654

E.5 Inverse of a matrix 656

E.6 Estimated multiple linear regression model equation 657

E.7 Least squares regression parameter estimates 659

E.8 Predicted or fitted values 661

E.9 Residuals and the regression standard error 663

E.10 Coefficient of determination 664

E.11 Regression parameter standard errors and t-statistics 665

E.12 Estimation and prediction 666

E.13 Leverages, standardized and studentized residuals, and Cook's distances 668

F Answers for selected problems 673

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 10 x 10 mm
Gewicht 454 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 1-119-61586-0 / 1119615860
ISBN-13 978-1-119-61586-6 / 9781119615866
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
32,99
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99