Machine Learning for OpenCV 4 (eBook)

Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn, 2nd Edition
eBook Download: EPUB
2019
420 Seiten
Packt Publishing (Verlag)
978-1-78953-719-2 (ISBN)

Lese- und Medienproben

Machine Learning for OpenCV 4 - Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler
39,49 € inkl. MwSt
Systemvoraussetzungen
40,81 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A practical guide to understanding the core machine learning and deep learning algorithms, and implementing them to create intelligent image processing systems using OpenCV 4




Key Features



  • Gain insights into machine learning algorithms, and implement them using OpenCV 4 and scikit-learn


  • Get up to speed with Intel OpenVINO and its integration with OpenCV 4


  • Implement high-performance machine learning models with helpful tips and best practices



Book Description



OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition.






You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you'll get to grips with the latest Intel OpenVINO for building an image processing system.






By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.





What you will learn



  • Understand the core machine learning concepts for image processing


  • Explore the theory behind machine learning and deep learning algorithm design


  • Discover effective techniques to train your deep learning models


  • Evaluate machine learning models to improve the performance of your models


  • Integrate algorithms such as support vector machines and Bayes classifier in your computer vision applications


  • Use OpenVINO with OpenCV 4 to speed up model inference



Who this book is for



This book is for Computer Vision professionals, machine learning developers, or anyone who wants to learn machine learning algorithms and implement them using OpenCV 4. If you want to build real-world Computer Vision and image processing applications powered by machine learning, then this book is for you. Working knowledge of Python programming is required to get the most out of this book.


A practical guide to understanding the core machine learning and deep learning algorithms, and implementing them to create intelligent image processing systems using OpenCV 4Key FeaturesGain insights into machine learning algorithms, and implement them using OpenCV 4 and scikit-learnGet up to speed with Intel OpenVINO and its integration with OpenCV 4Implement high-performance machine learning models with helpful tips and best practicesBook DescriptionOpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition.You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you'll get to grips with the latest Intel OpenVINO for building an image processing system.By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.What you will learnUnderstand the core machine learning concepts for image processingExplore the theory behind machine learning and deep learning algorithm designDiscover effective techniques to train your deep learning modelsEvaluate machine learning models to improve the performance of your modelsIntegrate algorithms such as support vector machines and Bayes classifier in your computer vision applicationsUse OpenVINO with OpenCV 4 to speed up model inferenceWho this book is forThis book is for Computer Vision professionals, machine learning developers, or anyone who wants to learn machine learning algorithms and implement them using OpenCV 4. If you want to build real-world Computer Vision and image processing applications powered by machine learning, then this book is for you. Working knowledge of Python programming is required to get the most out of this book.
Erscheint lt. Verlag 6.9.2019
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Schlagworte algorithms • computer vision • machine learning • OpenCV
ISBN-10 1-78953-719-3 / 1789537193
ISBN-13 978-1-78953-719-2 / 9781789537192
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 20,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Bradley

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39