Microwave Active Devices and Circuits for Communication (eBook)
XIX, 691 Seiten
Springer Singapore (Verlag)
978-981-13-3004-9 (ISBN)
Subhash Chandra Bera received his B.Sc. degree (with honors) in Physics from Presidency College, Calcutta, and B.Tech. and M.Tech. degrees in Radio Physics and Electronics from the Institute of Radio Physics and Electronics, University of Calcutta. He also received a Ph.D. degree in Microwave and Antenna Engineering from Gujarat University, India. Since 1994, Dr. Bera has been with the Space Applications Centre, Indian Space Research Organization (ISRO), Ahmedabad, India, where he has been involved in the design and development of microwave circuits and systems for various INSAT & GSAT series of communication payload projects as well as GAGAN/IRNSS navigation payload projects. He has developed several state-of-the-art microwave subsystems that are operational in various Indian national satellites. His research interests include microwave active circuits in general and solid-state power amplifiers, channel amplifiers, linearizers, limiters, attenuator and equalizers, in particular for spacecraft use. Currently he is Division Head of Satcom and Navigation Systems Engineering Division, Space Applications Centre (ISRO), Ahmedabad and Associate Project Director of GSAT-24 & GSAT-31 Communication Payloads. He has authored about 25 research publications in international journals and presented numerous papers at national and international conferences and symposiums. He has also delivered invited talks in the field of microwave active devices and circuits at various workshops and symposiums. He has also been granted four patents.
The book discusses active devices and circuits for microwave communications. It begins with the basics of device physics and then explores the design of microwave communication systems including analysis and the implementation of different circuits. In addition to classic topics in microwave active devices, such as p-i-n diodes, Schottky diodes, step recovery diodes, BJT, HBT, MESFET, HFET, and various microwave circuits like switch, phase shifter, attenuator, detector, amplifier, multiplier and mixer, the book also covers modern areas such as Class-F power amplifiers, direct frequency modulators, linearizers, and equalizers. Most of the examples are based on practical devices available in commercial markets and the circuits presented are operational. The book uses analytical methods to derive values of circuit components without the need for any circuit design tools, in order to explain the theory of the circuits. All the given analytical expressions are also cross verified using commercially available microwave circuit design tools, and each chapter includes relevant diagrams and solved problems. It is intended for scholars in the field of electronics and communication engineering.
Subhash Chandra Bera received his B.Sc. degree (with honors) in Physics from Presidency College, Calcutta, and B.Tech. and M.Tech. degrees in Radio Physics and Electronics from the Institute of Radio Physics and Electronics, University of Calcutta. He also received a Ph.D. degree in Microwave and Antenna Engineering from Gujarat University, India. Since 1994, Dr. Bera has been with the Space Applications Centre, Indian Space Research Organization (ISRO), Ahmedabad, India, where he has been involved in the design and development of microwave circuits and systems for various INSAT & GSAT series of communication payload projects as well as GAGAN/IRNSS navigation payload projects. He has developed several state-of-the-art microwave subsystems that are operational in various Indian national satellites. His research interests include microwave active circuits in general and solid-state power amplifiers, channel amplifiers, linearizers, limiters, attenuator and equalizers, in particular for spacecraft use. Currently he is Division Head of Satcom and Navigation Systems Engineering Division, Space Applications Centre (ISRO), Ahmedabad and Associate Project Director of GSAT-24 & GSAT-31 Communication Payloads. He has authored about 25 research publications in international journals and presented numerous papers at national and international conferences and symposiums. He has also delivered invited talks in the field of microwave active devices and circuits at various workshops and symposiums. He has also been granted four patents.
Foreword 7
Preface 8
Contents 10
About the Author 17
1 Introduction 18
1.1 Microwave Communications 18
1.2 Microwave Active Circuits 22
1.3 Microwave Active Devices 25
1.4 Microwave Circuit Analysis and Measurements 26
1.5 Book Outline 27
References 28
2 P-I-N Diode 29
2.1 Introduction 29
2.2 Basics of P-I-N Diode 29
2.3 P-I-N Diode Characteristics 30
2.4 Nonlinearity of P-I-N Diode 35
2.5 Temperature Behaviour of P-I-N Diode 36
2.6 Temperature-Invariant RF Resistance of P-I-N Diode 38
References 46
3 Schottky Diode 48
3.1 Introduction 48
3.2 Basics of Schottky Diode 48
3.3 Schottky Diode Characteristics 51
3.4 Temperature Behaviour of Schottky Diodes 54
3.5 Temperature Invariant RF Resistance 56
References 60
4 Special Microwave Diodes 61
4.1 Introduction 61
4.2 Step Recovery Diode 61
4.2.1 Characteristic of SRD 63
4.3 Tunnel Diodes 65
4.3.1 Characteristic of Tunnel Diode 66
4.4 Backward Diode 68
4.5 Varactor Diode 70
References 71
5 Microwave Bipolar Transistors 73
5.1 Introduction 73
5.2 Bipolar Junction Transistor (BJT) 74
5.2.1 Frequency Limitation of BJT 79
5.2.2 Temperature Behaviour of BJT 83
5.3 Hetero-junction Bipolar Transistor (HBT) 84
5.3.1 SiGe HBT 87
5.3.2 III–V Group Semiconductor HBT 88
5.3.3 GaN HBT 88
References 90
6 Microwave Field Effect Transistors 92
6.1 Introduction 92
6.2 Metal–Semiconductor Field Effect Transistors 94
6.3 Hetero-Structure Field Effect Transistors (HFETs) 98
6.3.1 High-Electron-Mobility Transistors (HEMTs) 100
6.3.2 Pseudo-morphic HEMTs (pHEMTs) 103
6.3.3 Meta-morphic HEMTs (mHEMTs) 105
6.4 Microwave GaN HEMTs 105
6.5 Equivalent Circuit of Microwave FETs 107
6.5.1 Transconductance Gain (gm) 108
6.5.2 Output Conductance (1/rds) 110
6.5.3 Gate–Source and Gate–Drain Capacitances (Cgs and Cgd) 112
6.5.4 Charging Resistance (Ri) 114
6.6 Maximum Frequency of Operation 120
References 121
7 Microwave Circuit Analysis 124
7.1 Introduction 124
7.2 Transmission Line Theory and Analysis 125
7.3 Microwave Transmission Lines 133
7.3.1 Losses in Transmission Lines 133
7.3.2 Coaxial Transmission Lines 136
7.3.3 Waveguides 140
7.3.4 Cut-Off Frequency and Guide Wavelength 146
7.3.5 Planar Transmission Lines 152
7.4 Transmission Line Elements 160
7.5 Smith Chart Analysis 162
7.6 Network Theory of Circuits and Transmission Lines 171
7.6.1 S-Parameter Network Representation 172
7.6.2 S-Parameters for Matched Reciprocal Lossless Networks 178
7.6.3 ABCD Parameter for Network Representation 187
7.6.4 Conversion in Between ABCD and S-Parameters 190
7.7 Power Transfer in Microwave Networks 192
7.7.1 Power Transfer from Source to a Load 192
7.7.2 Power Transfer to and from a 2-Port Network 194
References 210
8 Microwave Switches 211
8.1 Introduction 211
8.2 Switch Circuits Based on P-I-N Diode 212
8.3 Series Switch Configuration 214
8.4 Shunt Switch Configuration 218
8.5 Compound Switch Configuration 221
8.5.1 Series–Shunt Configuration 221
8.5.2 TEE Configuration 225
8.6 Compound Switch Analysis Using ABCD Parameter 229
8.7 Switch Circuits Based on FETs 231
8.8 Applications of RF/Microwave Switches 233
References 245
9 Microwave Attenuators 247
9.1 Introduction 247
9.2 Diode-Based Attenuator Circuits 248
9.3 Series- or Shunt-Connected Element 249
9.4 Multiple Shunt-Connected Element 252
9.5 Matched Attenuator Circuits 255
9.5.1 TEE Attenuator 256
9.5.2 ? Attenuator 260
9.5.3 Quadrature Hybrid Matched Attenuator 263
9.6 Driver Circuit for P-I-N Diode Attenuators 267
9.7 Effect of Nonideal Components in Driver Circuits 271
9.8 Experimental Determination of VOPTM 274
9.9 FET-Based Attenuators 275
References 289
10 Microwave Phase Shifters 291
10.1 Introduction 291
10.2 Phase Shift and Time Delay 291
10.3 Types of Phase Shifter 293
10.4 Realization of Phase Shifters 295
10.4.1 Switched Transmission Line Phase Shifter 295
10.4.2 Varactor Diode-Based Analog Phase Shifters 297
10.4.3 Four-Quadrant Continuously Variable Phase Shifter 299
10.4.4 Four-Quadrant Digital Phase Shifter 304
10.5 Applications of RF/Microwave Phase Shifter 305
References 306
11 Microwave Modulators 307
11.1 Introduction 307
11.2 Amplitude Modulators 308
11.3 Phase Modulators 310
11.3.1 Bi-Phase Modulators 310
11.3.2 Bi-Phase-Balanced Modulators 312
11.4 I–Q Vector Modulators 314
11.5 PSK Modulators 317
11.6 QAM Modulators 317
References 318
12 Amplitude Tilt Microwave Equalizers 319
12.1 Introduction 319
12.2 Different Configurations 320
12.3 Equalizer with Adjustable Amplitude Slope 323
12.4 Equalizer with Adjustable Parabolic Gain Slope for Broadband MPM 327
12.5 Equalizer with Adjustable Positive Gain Slopes for Solid-State Circuits 328
12.6 Equalizer with Adjustable Positive as Well as Negative Gain Slopes 330
12.7 Versatile Equalizer with Variable Gain Slope and Insertion Loss 330
References 343
13 Microwave Detectors 344
13.1 Introduction 344
13.2 Microwave Power 345
13.3 Diode Detectors 351
13.4 RMS Power (Average) Detector 357
13.5 Envelope and Peak Power Detector 358
13.6 Applications 358
References 359
14 Microwave Solid-State Amplifiers 360
14.1 Introduction 360
14.2 Types of Microwave Amplifiers 362
14.2.1 Dynamic Range of Amplifier 364
14.2.2 Spurious-Free Dynamic Range 369
14.3 Stability of Microwave Amplifier 374
14.4 Single-Stage Amplifier Design 387
14.4.1 Amplifiers Using Unconditionally Stable Device 388
14.4.2 Amplifier Using Conditionally Stable Device 391
14.5 Amplifier with Specific Gain 393
14.5.1 Amplifier with Specific Transducer Power Gain 393
14.5.2 Amplifier with Specific Available Power Gain 397
14.5.3 Amplifier with Specific Operating Power Gain 405
14.6 Small Signal Amplifiers 411
14.6.1 Low Noise Amplifier (LNA) Design 411
14.6.2 High-Gain Amplifier Design 422
14.7 Large Signal Amplifiers 431
14.7.1 Linear Power Amplifier 435
14.7.2 Load-Pull Characterization Technique 445
14.7.3 Amplifiers with Reduced Conduction Angle 446
14.7.4 Nonlinear Power Amplifiers 456
14.7.5 Class-F Power Amplifier 462
14.8 FETs Output Power Capability 470
14.8.1 Microwave Power Combing Techniques 474
14.8.2 In-Phase Power Combiners 475
14.8.3 Balanced Power Combining 480
14.9 Temperature Compensation of Microwave Amplifiers 487
References 487
15 Microwave Limiters 490
15.1 Introduction 490
15.2 Limiter Characteristics 491
15.3 P-I-N Diode Limiters 493
15.4 Schottky Diode Limiters 498
15.5 Amplifier-Based Limiter 503
15.6 Closed-Loop Limiter 505
15.6.1 Temperature Behaviour of OLC System 506
15.6.2 Temperature Compensation of OLC System 507
15.7 Applications 508
15.7.1 OLC for Out-of-Band Carrier Mitigation in Filters 509
References 510
16 Microwave Linearizers 511
16.1 Introduction 511
16.2 Types of Distortion and Amplifier Nonlinearity 512
16.3 Types of Linearizers 514
16.3.1 Feedback Linearizers 514
16.3.2 Feedforward Linearizers 515
16.3.3 Predistortion Linearizers 516
16.4 Implementation of Predistortion Linearizers 517
16.4.1 Schottky Diode Predistortion Linearizers 518
16.4.2 Linearizer with Vector Modulator Configuration 523
16.4.3 Temperature Behaviour of Diode Linearizer 527
16.4.4 Broadband Linearizers 530
16.5 Digital Predistortion Linearizers 533
References 535
17 Microwave Frequency Multipliers 537
17.1 Introduction 537
17.2 Principle of Multiplier Operation 538
17.3 Diode Multiplier 543
17.3.1 Schottky Diode Frequency Multiplier 543
17.3.2 Varactor Diode Frequency Multiplier 545
17.3.3 SRD Frequency Multiplier 547
17.4 Transistor Multiplier 550
17.5 Realization of FET Multipliers 558
17.6 Balanced Frequency Multipliers 560
17.6.1 Balanced Frequency Multipliers Using Diodes 561
17.6.2 Balanced Frequency Multiplier Using Transistors 562
References 563
18 Microwave Frequency Mixers 565
18.1 Introduction 565
18.2 Working Principle of Frequency Mixers 565
18.2.1 Image Frequency in Mixer 568
18.2.2 Conversion Loss of Frequency Mixer 570
18.2.3 Noise Performance of Frequency Mixer 572
18.3 Single-Ended Mixers 575
18.4 Balanced Mixers 580
18.4.1 Single-Balanced Mixers 580
18.4.2 Double-Balanced Mixers 584
18.4.3 Image Rejection Mixers 585
18.5 Subharmonic Mixers 586
References 590
19 Microwave Communication Systems 592
19.1 Introduction 592
19.2 Mobile Communication Systems 593
19.2.1 Receiver Architecture for Mobile Communication 594
19.2.2 Transmitter Architecture for Mobile Communication 597
19.2.3 Transceiver for Mobile Communication 598
19.3 Satellite Communication Systems 602
19.4 Receiver 615
19.4.1 Local Oscillator 619
19.5 Satellite Transmitter 621
19.5.1 Driver Amplifier (DA) 621
19.5.2 Travelling Wave Tube Amplifier (TWTA) 625
19.5.3 Solid-State Power Amplifier (SSPA) 627
19.6 Linearizer 629
19.7 Microwave Power Module (MPM) 631
19.8 Multiport Amplifier (MPA) 632
References 654
20 Multiple Choice Questions with Answers 656
20.1 Multiple Choice Questions 656
20.2 Answers of MCQs with Explanations 687
Index 698
Erscheint lt. Verlag | 11.12.2018 |
---|---|
Reihe/Serie | Lecture Notes in Electrical Engineering | Lecture Notes in Electrical Engineering |
Zusatzinfo | XIX, 691 p. 505 illus., 29 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
Schlagworte | Active Devices • bipolar junction transistor • Circuits for Microwave Communications • Hetero-junction Bipolar Transistor • Microwave Applications • p-i-n diode • Schottky diode • Special Microwave Diodes • Step Recovery Diode |
ISBN-10 | 981-13-3004-2 / 9811330042 |
ISBN-13 | 978-981-13-3004-9 / 9789811330049 |
Haben Sie eine Frage zum Produkt? |
Größe: 25,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich