Statistical Physics of Synchronization
Springer International Publishing (Verlag)
978-3-319-96663-2 (ISBN)
Synchronizing systems.- Introduction.- The oscillators and their interaction: A qualitative discussion.- Oscillators as limit cycles.- Interacting limit-cycle oscillators.- Synchronizing systems as statistical mechanical systems.- The features of a statistical physical description.- Some results for noiseless interacting oscillators.- The oscillators with inertia.- Appendix 1: A two-dimensional dynamics with a limit-cycle attractor.- Appendix 2: The Lyapunov exponents.- Appendix 3: The one-body distribution function in an N-body system.- Oscillators with first-order dynamics.- The oscillators with distributed natural frequencies.- The Kuramoto model.- Unimodal symmetric g(w).- Nonunimodal g(w).- Appendix 1: An H-theorem for a particular simple case.- Appendix 2: Form of the function r(K) for symmetric and unimodal frequency distributions in the Kuramoto model.- Appendix 3: The numerical solution of Eq. (2.34).- Oscillators with second-order dynamics.- Generalized Kuramoto model with inertia and noise.- Nonequilibrium first-order synchronization phase transition: Simulation results.- Analysis in the continuum limit: The Kramers equation.- Phase diagram: Comparison with numeric.- Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models.- Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance.- Appendix 3: Simulation details for the dynamics (3.9).- Appendix 4: Derivation of the Kramers equation.- Appendix 5: Nature of solutions of Eq. (3.32).- Appendix 6: Solution of the system of equations (3.39).- Appendix 7: Convergence properties of the expansion (3.38).
Erscheinungsdatum | 07.09.2018 |
---|---|
Reihe/Serie | SpringerBriefs in Complexity |
Zusatzinfo | XVI, 121 p. 32 illus., 27 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 225 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Schlagworte | breaking of ergodicity • Complexity • Fokker-Planck Equation • inequivalence of statistical ensembles • Kramers equation • Kuramoto model • Limit-cycle oscillators • long-range interactions • Mean-field analysis • noisy synchronizing systems • non-additive systems • nonequilibrium steady states • Ott-Antonson solution • quenched random variables • spontaneous synchronization • synchronizing systems |
ISBN-10 | 3-319-96663-4 / 3319966634 |
ISBN-13 | 978-3-319-96663-2 / 9783319966632 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich