Estimation of Mutual Information
Seiten
2025
|
1st ed. 2024
Springer Verlag, Singapore
978-981-13-0733-1 (ISBN)
Springer Verlag, Singapore
978-981-13-0733-1 (ISBN)
- Noch nicht erschienen - erscheint am 13.05.2025
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This book presents the mutual information (MI) estimation methods recently proposed by the author and published in a number of major journals. It includes two types of applications: learning a forest structure from data for multivariate variables and identifying independent variables (independent component analysis). MI between a pair of random variables is mathematically defined in information theory. It measures how dependent the two variables are, takes nonnegative values, and is zero if, and only if, they are independent, and is often necessary to know the value of MI between two variables in machine learning, statistical data analysis, and various sciences, including physics, psychology, and economics. However, the real value of MI is not available and it can only be estimated from data. The essential difference between this and other estimations is that consistency and independence testing are proved for the estimations proposed by the author, where the authors state that an estimation satisfies consistency and independence testing when the estimation corresponds to the true value and when the MI estimation value is zero with probability one as the sample size grows, respectively. Thus far, no MI estimations satisfy both these properties at once.
Joe Suzuki, Osaka University
Chapter 1 Introduction.- Chapter 2 Estimation of Mutual Information for Discrete Variables.- Chapter 3 Estimation of Mutual Information for Continuous Variables.- Chapter 4 Estimation of Mutual Information for High-dimensional Variables.- Chapter 5 Application to Causal Discovery: Lingam and ICA.- Chapter 6 Concluding Remarks.
Erscheint lt. Verlag | 13.5.2025 |
---|---|
Reihe/Serie | Behaviormetrics: Quantitative Approaches to Human Behavior ; 2 |
Zusatzinfo | 20 Illustrations, color; 40 Illustrations, black and white; X, 120 p. 60 illus., 20 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 981-13-0733-4 / 9811307334 |
ISBN-13 | 978-981-13-0733-1 / 9789811307331 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99 €