Robotic Tactile Perception and Understanding (eBook)
XX, 207 Seiten
Springer Singapore (Verlag)
978-981-10-6171-4 (ISBN)
This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.
Huaping Liu is an associate professor at the Department of Computer Science and Technology, Tsinghua University. He serves as an associate editor for various journals, including IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Industrial Informatics, IEEE Robotics & Automation Letters, Neurocomputing, Cognitive Computation. He has served as an associate editor for ICRA and IROS and on IJCAI, RSS, and IJCNN Program Committees. His research interests include robotic perception and learning.
Fuchun Sun is a full professor at the Department of Computer Science and Technology, Tsinghua University. He is the recipient of National Science Fund for Distinguished Young Scholars. He serves as an associate editor for a number of international journals, including IEEE Transactions on Systems, Man and Cybernetics: Systems, IEEE Transactions on Fuzzy Systems, Mechatronics, Robotics and Autonomous Systems. His research interests include intelligent control and robotics.
This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.
Huaping Liu is an associate professor at the Department of Computer Science and Technology, Tsinghua University. He serves as an associate editor for various journals, including IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Industrial Informatics, IEEE Robotics & Automation Letters, Neurocomputing, Cognitive Computation. He has served as an associate editor for ICRA and IROS and on IJCAI, RSS, and IJCNN Program Committees. His research interests include robotic perception and learning. Fuchun Sun is a full professor at the Department of Computer Science and Technology, Tsinghua University. He is the recipient of National Science Fund for Distinguished Young Scholars. He serves as an associate editor for a number of international journals, including IEEE Transactions on Systems, Man and Cybernetics: Systems, IEEE Transactions on Fuzzy Systems, Mechatronics, Robotics and Autonomous Systems. His research interests include intelligent control and robotics.
Introduction.- Representation of Tactile and Visual Modalities.- Tactile Object Recognition using Joint Sparse Coding.- Tactile Object Recognition using Supervised Dictionary Learning.- Tactile Adjective Understanding using Structured Output-Associated Dictionary Learning.- Tactile Material Identification using Semantics-Regularized Dictionary Learning.- Visual-Tactile Fusion Object Recognition using Joint Sparse Coding.- Visual-Tactile Fusion Material Identification using Dictionary Learning.- Visual-Tactile Cross-Modal Matching using Common Dictionary Learning.-Conclusions.
Erscheint lt. Verlag | 20.3.2018 |
---|---|
Zusatzinfo | XX, 207 p. 131 illus., 37 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Dictionary Learning • machine learning • Object recognition • Robots Perception • sparse coding • Tactile Adjective Understanding • Tactile Material Identification • Tactile Perception • visual perception • Visual-tactile Fusion |
ISBN-10 | 981-10-6171-8 / 9811061718 |
ISBN-13 | 978-981-10-6171-4 / 9789811061714 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 11,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich