Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology
Seiten
2018
|
1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-76583-9 (ISBN)
Springer International Publishing (Verlag)
978-3-319-76583-9 (ISBN)
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A -algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A -categories for closed oriented manifolds involving families of Morse functions. To make A -structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.
Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.
1. Basics on Morse homology.- 2. Perturbations of gradient flow trajectories.- 3. Nonlocal generalizations.- 4. Moduli spaces of perturbed Morse ribbon trees.- 5. The convergence behaviour of sequences of perturbed Morse ribbon trees.- 6. Higher order multiplications and the A -relations.- 7. A -bimodule structures on Morse chain complexes.- A. Orientations and sign computations for perturbed Morse ribbon trees.
Erscheinungsdatum | 18.05.2018 |
---|---|
Reihe/Serie | Atlantis Studies in Dynamical Systems |
Zusatzinfo | XXV, 171 p. 20 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 467 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | A-infinity-algebras • Differential topology • geometric topology • Morse Homology • Morse Theory |
ISBN-10 | 3-319-76583-3 / 3319765833 |
ISBN-13 | 978-3-319-76583-9 / 9783319765839 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €