Enumerative Combinatorics: Volume 2 - Richard P. Stanley

Enumerative Combinatorics: Volume 2

Buch | Hardcover
600 Seiten
1999
Cambridge University Press (Verlag)
978-0-521-56069-6 (ISBN)
199,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Enumerative combinatorics deals with the basic problem of counting how many objects have a given property, a subject of great applicability. This book provides an introduction at a level suitable for graduate students. Extensive exercises with solutions show connections to other areas of mathematics.
This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.

5. Composition of generating functions; 6. Algebraic, D-finite, and noncommutative generating functions; 7. Symmetric functions; Appendix Sergey Fomin.

Erscheint lt. Verlag 13.1.1999
Reihe/Serie Cambridge Studies in Advanced Mathematics
Mitarbeit Anhang von: Sergey Fomin
Verlagsort Cambridge
Sprache englisch
Maße 160 x 237 mm
Gewicht 1045 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-521-56069-1 / 0521560691
ISBN-13 978-0-521-56069-6 / 9780521560696
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00