Topologie algébrique (eBook)
XV, 498 Seiten
Springer Berlin (Verlag)
978-3-662-49361-8 (ISBN)
Ce livre des Éléments de mathématique est consacré à la Topologie algébrique. Les quatre premiers chapitres présentent la théorie des revêtements d'un espace topologique et du groupe de Poincaré. On construit le revêtement universel d'un espace connexe pointé délaçable et on établit l'équivalence de catégories entre revêtements de cet espace et actions du groupe de Poincaré.
On démontre une version générale du théorème de van Kampen exprimant le groupoïde de Poincaré d'un espace topologique comme un coégalisateur de diagrammes de groupoïdes. Dans de nombreuses situations géométriques, on en déduit une présentation explicite du groupe de Poincaré.
Mode d'Emploi.- Introduction.- Chapitre I. Revêtements.- 1. Produits fibrés et carrés cartésiens.- 2. Applications étales.- 3. Faisceaux.- 4. Revêtements.- 5. Revêtements principaux.- 6. Espaces simplement connexes.- Exercices.- Chapitre II. Groupoïdes.- 1. Carquois.- 2. Graphes.- 3. Groupoïdes.- 4. Homotopies.- 5. Coégalisateur.- Exercices.- Chapitre III. Homotopie et Groupoïdes de Poincaré.- 1. Homotopies, homéotopies.- 2. Homotopie et chemins.- 3. Groupoïde de Poincaré.- 4. Homotopie et revêtements.- 5. Homotopie et revêtements (cas des espaces localement connexes par arcs).- Exercices.- Chapitre IV. Espaces Delaçables.- 1. Espaces délaçables.- 2. Groupes de Poincaré des espaces délaçables.- 3. Groupes de Poincaré des groupes topologiques.- 4. Théorie de la descente.- 5. Théorème de van Kampen.- 6. Espaces classifiants.- Exercices.- Index des notations.- Index terminologique.
Erscheint lt. Verlag | 29.3.2016 |
---|---|
Zusatzinfo | XV, 498 p. |
Verlagsort | Berlin |
Sprache | französisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Technik | |
Schlagworte | 55-02, 54Bxx, 18F20, 57-M05, 57-M10, 20-L05 • Bourbaki • Éléments de mathématique • espaces classifiants • espaces délaçables • faisceaux • groupoïde de Poincaré • revêtements • théorème de van Kampen • topologie algébrique |
ISBN-10 | 3-662-49361-6 / 3662493616 |
ISBN-13 | 978-3-662-49361-8 / 9783662493618 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich