Algebraic Operads - Murray R. Bremner, Vladimir Dotsenko

Algebraic Operads

An Algorithmic Companion
Buch | Hardcover
365 Seiten
2016
Chapman & Hall/CRC (Verlag)
978-1-4822-4856-2 (ISBN)
149,60 inkl. MwSt
Algebraic Operads: An Algorithmic Companion presents a systematic treatment of Gröbner bases in several contexts. The book builds up to the theory of Gröbner bases for operads due to the second author and Khoroshkin as well as various applications of the corresponding diamond lemmas in algebra.

The authors present a variety of topics including: noncommutative Gröbner bases and their applications to the construction of universal enveloping algebras; Gröbner bases for shuffle algebras which can be used to solve questions about combinatorics of permutations; and operadic Gröbner bases, important for applications to algebraic topology, and homological and homotopical algebra.

The last chapters of the book combine classical commutative Gröbner bases with operadic ones to approach some classification problems for operads. Throughout the book, both the mathematical theory and computational methods are emphasized and numerous algorithms, examples, and exercises are provided to clarify and illustrate the concrete meaning of abstract theory.

Murray R. Bremner, PhD, is a professor at the University of Saskatchewan in Canada. He attended that university as an undergraduate, and received an M. Comp. Sc. degree at Concordia University in Montréal. He obtained a doctorate in mathematics at Yale University with a thesis entitled On Tensor Products of Modules over the Virasoro Algebra. Prior to returning to Saskatchewan, he held shorter positions at MSRI in Berkeley and at the University of Toronto. Dr. Bremner authored the book Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications and is a co-translator with M. V. Kotchetov of Selected Works of A. I. Shirshov in English Translation. His primary research interests are algebraic operads, nonassociative algebra, representation theory, and computer algebra. Vladimir Dotsenko, PhD, is an assistant professor in pure mathematics at Trinity College Dublin in Ireland. He studied at the Mathematical High School 57 in Moscow, Independent University of Moscow, and Moscow State University. His PhD thesis is titled Analogues of Orlik–Solomon Algebras and Related Operads. Dr. Dotsenko also held shorter positions at Dublin Institute for Advanced Studies and the University of Luxembourg. His collaboration with Murray started in February 2013 in CIMAT (Guanajuato, Mexico), where they both lectured in the research school "Associative and Nonassociative Algebras and Dialgebras: Theory and Algorithms." His primary research interests are algebraic operads, homotopical algebra, combinatorics, and representation theory.

Normal Forms for Vectors and Univariate Polynomials. Noncommutative Associative Algebras. Nonsymmetric Operads. Twisted Associative Algebras and Shuffle Algebras. Symmetric Operads and Shuffle Operads. Operadic Homological Algebra and Gröbner Bases. Commutative Gröbner Bases. Linear Algebra over Polynomial Rings. Case Study of Nonsymmetric Binary Cubic Operads. Case Study of Nonsymmetric Ternary Quadratic Operads. Appendices: Maple Code for Buchberger’s Algorithm.

Erscheinungsdatum
Zusatzinfo 18 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 684 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 1-4822-4856-5 / 1482248565
ISBN-13 978-1-4822-4856-2 / 9781482248562
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich