Feature Selection for High-Dimensional Data

Buch | Hardcover
XV, 147 Seiten
2015 | 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-21857-1 (ISBN)

Lese- und Medienproben

Feature Selection for High-Dimensional Data - Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos
106,99 inkl. MwSt

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.

The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.

They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.

The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.

Dr. Verónica Bolón-Canedo received her PhD in Computer Science from the University of A Coruña, where she is currently a postdoctoral researcher. Her research interests include data mining, feature selection and machine learning.

Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Erscheint lt. Verlag 14.10.2015
Reihe/Serie Artificial Intelligence: Foundations, Theory, and Algorithms
Zusatzinfo XV, 147 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Big Data • Big Dimensionality • Data preprocessing • Data reduction • data structures • dimensionality reduction • Feature Selection • High-Dimensionality • machine learning
ISBN-10 3-319-21857-3 / 3319218573
ISBN-13 978-3-319-21857-1 / 9783319218571
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95