Feature Selection for High-Dimensional Data - Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos

Feature Selection for High-Dimensional Data

Buch | Softcover
XV, 147 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-36643-2 (ISBN)
53,49 inkl. MwSt

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.

The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.

They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.

The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.

Dr. Verónica Bolón-Canedo received her PhD in Computer Science from the University of A Coruña, where she is currently a postdoctoral researcher. Her research interests include data mining, feature selection and machine learning.

Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Erscheinungsdatum
Reihe/Serie Artificial Intelligence: Foundations, Theory, and Algorithms
Zusatzinfo XV, 147 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 261 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Big Data • Big Dimensionality • Data preprocessing • Data reduction • data structures • dimensionality reduction • Feature Selection • High-Dimensionality • machine learning
ISBN-10 3-319-36643-2 / 3319366432
ISBN-13 978-3-319-36643-2 / 9783319366432
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90