Feature Selection for High-Dimensional Data (eBook)

eBook Download: PDF
2015 | 1st ed. 2015
XV, 147 Seiten
Springer International Publishing (Verlag)
978-3-319-21858-8 (ISBN)

Lese- und Medienproben

Feature Selection for High-Dimensional Data - Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.

The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.

They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.

The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.



Dr. Verónica Bolón-Canedo received her PhD in Computer Science from the University of A Coruña, where she is currently a postdoctoral researcher. Her research interests include data mining, feature selection and machine learning. 

Dr. Noelia Sánchez-Maroño received her PhD in 2005 from the University of A Coruña, where she is currently a lecturer. Her research interests include agent-based modeling, machine learning and feature selection.

Prof. Amparo Alonso-Betanzos received her PhD in 1988 from the University of Santiago de Compostela, she is a Chair Professor in the Dept. of Computer Science at the University of A Coruña (Spain) and coordinator of the Laboratory for Research and Development in Artificial Intelligence. Her areas of expertise are machine learning, feature selection, knowledge-based systems, and their applications to fields such as predictive maintenance in engineering or predicting gene expression in bioinformatics.

Dr. Verónica Bolón-Canedo received her PhD in Computer Science from the University of A Coruña, where she is currently a postdoctoral researcher. Her research interests include data mining, feature selection and machine learning. Dr. Noelia Sánchez-Maroño received her PhD in 2005 from the University of A Coruña, where she is currently a lecturer. Her research interests include agent-based modeling, machine learning and feature selection. Prof. Amparo Alonso-Betanzos received her PhD in 1988 from the University of Santiago de Compostela, she is a Chair Professor in the Dept. of Computer Science at the University of A Coruña (Spain) and coordinator of the Laboratory for Research and Development in Artificial Intelligence. Her areas of expertise are machine learning, feature selection, knowledge-based systems, and their applications to fields such as predictive maintenance in engineering or predicting gene expression in bioinformatics.

Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Erscheint lt. Verlag 5.10.2015
Reihe/Serie Artificial Intelligence: Foundations, Theory, and Algorithms
Artificial Intelligence: Foundations, Theory, and Algorithms
Zusatzinfo XV, 147 p. 16 illus., 8 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Schlagworte Big Data • Big Dimensionality • Data preprocessing • Data reduction • data structures • dimensionality reduction • Feature Selection • High-Dimensionality • machine learning
ISBN-10 3-319-21858-1 / 3319218581
ISBN-13 978-3-319-21858-8 / 9783319218588
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Wie Unternehmen Daten zur Skalierung ihres Geschäfts nutzen können

von Jonas Rashedi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
27,99