Compositions of Quadratic Forms (eBook)
430 Seiten
De Gruyter (Verlag)
978-3-11-082483-4 (ISBN)
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics.
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.
Editorial Board
Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany
Honorary Editor
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Titles in planning include
Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
lt;P>"This is an introduction to the field, a research monograph, and a comprehensive survey."
P. Schmitt, Wien, in: Monatshefte für Mathematik, Wien, 1/2003
"[…] the book under review contains an impressive wealth of material. Most of it has only appeared in research papers, but quite a few points have been streamlined, and some results were previously unpublished. The mathematical taste of the author also contributes to this abundance: he obviously takes pleasure (to the reader's delight) in discussing topics which are marginally related to compositions of quadratic forms if they look striking or particularly appealing in some ways." Mathematical Reviews
"The author considers all facets, variations and generalisations of this theme in great detail. Many different ideas and methods from algebra, geometry, combinatorics and topology have been used and are presented here. The choice of material shows good taste and reveals the author’s love for this subject. A lot of exercises and 25 pages of references to the original literature complete the book." Zentralblatt für Mathematik
Erscheint lt. Verlag | 24.6.2011 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics | ISSN |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | Quadratische Form |
ISBN-10 | 3-11-082483-3 / 3110824833 |
ISBN-13 | 978-3-11-082483-4 / 9783110824834 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich