Mathematical Statistics
Chapman & Hall/CRC (Verlag)
978-1-4987-2268-1 (ISBN)
The book covers asymptotic efficiency in semiparametric models from the Le Cam and Fisherian points of view as well as some finite sample size optimality criteria based on Lehmann–Scheffé theory. It develops the theory of semiparametric maximum likelihood estimation with applications to areas such as survival analysis. It also discusses methods of inference based on sieve models and asymptotic testing theory. The remainder of the book is devoted to model and variable selection, Monte Carlo methods, nonparametric curve estimation, and prediction, classification, and machine learning topics. The necessary background material is included in an appendix.
Using the tools and methods developed in this textbook, students will be ready for advanced research in modern statistics. Numerous examples illustrate statistical modeling and inference concepts while end-of-chapter problems reinforce elementary concepts and introduce important new topics. As in Volume I, measure theory is not required for understanding.
The solutions to exercises for Volume II are included in the back of the book.
Check out Volume I for fundamental, classical statistical concepts leading to the material in this volume.
Peter J. Bickel is a professor emeritus in the Department of Statistics and a professor in the Graduate School at the University of California, Berkeley. Dr. Bickel is a member of the American Academy of Arts and Sciences and the National Academy of Sciences. He has been a Guggenheim Fellow and MacArthur Fellow, a recipient of the COPSS Presidents’ Award, and president of the Bernoulli Society and the Institute of Mathematical Statistics. He holds honorary doctorate degrees from the Hebrew University of Jerusalem and ETH Zurich. Kjell A. Doksum is a senior scientist in the Department of Statistics at the University of Wisconsin–Madison. His research encompasses the estimation of nonparametric regression and correlation curves, inference for global measures of association in semiparametric and nonparametric settings, the estimation of regression quantiles, statistical modeling and analysis of HIV data, the analysis of financial data, and Bayesian nonparametric inference.
Introduction and Examples. Tools for Asymptotic Analysis. Distribution-Free, Unbiased, and Equivariant Procedures. Inference in Semiparametric Models. Monte Carlo Methods. Nonparametric Inference for Functions of One Variable. Prediction and Machine Learning. Appendices. References. Indices.
Reihe/Serie | Chapman & Hall/CRC Texts in Statistical Science |
---|---|
Zusatzinfo | 1 Illustrations, black and white |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 1105 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
ISBN-10 | 1-4987-2268-7 / 1498722687 |
ISBN-13 | 978-1-4987-2268-1 / 9781498722681 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich