Numerical Python - Robert Johansson

Numerical Python

A Practical Techniques Approach for Industry
Buch | Softcover
487 Seiten
2015 | 1st ed.
Apress (Verlag)
978-1-4842-0554-9 (ISBN)
48,14 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more.

After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games.

Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.

Robert Johansson is a numerical Python expert, computational scientist. He has experience with SciPy, NumPy and works on QuTiP, an open-source python framework for simulating the dynamics of quantum systems.

1. Introduction to computing with Python.-2. Vectors, matrices and multidimensional arrays.-3. Symbolic computing.-4. Plotting and visualization.-5. Equation solving.-6. Optimization.-7. Interpolation.-8. Integration.-9. Ordinary differential equations.-10. Sparse matrices and graphs.-11. Partial differential equations.-12. Data processing and analysis.-13. Statistics.-14. Statistical modeling.-15. Machine learning.-16. Bayesian statistics.-17. Signal and image processing.-18. Data input and output.-19. Code optimization.-20. Appendix: Installation.-

Zusatzinfo 54 Illustrations, color; XXII, 487 p. 54 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 178 x 254 mm
Gewicht 9511 g
Themenwelt Informatik Programmiersprachen / -werkzeuge Python
Informatik Theorie / Studium Compilerbau
Mathematik / Informatik Informatik Web / Internet
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-4842-0554-5 / 1484205545
ISBN-13 978-1-4842-0554-9 / 9781484205549
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

Buch | Hardcover (2023)
Rheinwerk (Verlag)
44,90
eine praktische, projektbasierte Programmiereinführung

von Eric Matthes

Buch | Softcover (2023)
dpunkt (Verlag)
32,90
Grundlagen und Praxis der Python-Programmierung

von Paul Barry

Buch | Softcover (2024)
O'Reilly (Verlag)
49,90