Vector Optimization
Springer Berlin (Verlag)
978-3-642-42330-7 (ISBN)
Fundamentals and important results of vector optimization in a general setting are presented in this book. The theory developed includes scalarization, existence theorems, a generalized Lagrange multiplier rule and duality results. Applications to vector approximation, cooperative game theory and multiobjective optimization are described. The theory is extended to set optimization with particular emphasis on contingent epiderivatives, subgradients and optimality conditions. Background material of convex analysis being necessary is concisely summarized at the beginning.
This second edition contains new parts on the adaptive Eichfelder-Polak method, a concrete application to magnetic resonance systems in medical engineering and additional remarks on the contribution of F.Y. Edgeworth and V. Pareto. The bibliography is updated and includes more recent important publications.
I Convex Analysis. - II Theory of Vector Optimization. - III Mathematical Applications. - IV Engineering Applications. - V Extensions to Set Optimization.
Erscheint lt. Verlag | 14.10.2014 |
---|---|
Zusatzinfo | XV, 481 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 759 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Betriebswirtschaft / Management ► Unternehmensführung / Management | |
ISBN-10 | 3-642-42330-2 / 3642423302 |
ISBN-13 | 978-3-642-42330-7 / 9783642423307 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich