Accelerated Lattice Boltzmann Model for Colloidal Suspensions - Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju

Accelerated Lattice Boltzmann Model for Colloidal Suspensions (eBook)

Rheology and Interface Morphology
eBook Download: PDF
2014 | 2014
VIII, 158 Seiten
Springer US (Verlag)
978-1-4899-7402-0 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids.

Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.

Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow.

The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems.



Dr. Hassan Farhat received his M.S. in Mechanical Engineering from the Higher Institute of Mechanical and Electrical Engineering, Varna, Bulgaria. He finished a second M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of multiphase and multicomponent fluids as a platform for the study of Colloidal suspensions using the lattice Boltzmann method (LBM). He is currently working as Engineering Specialist in the automotive industry and part time faculty at Wayne State University.

Dr. Joon Sang Lee received his B.S., M.S. and Ph.D. in Mechanical Engineering from Iowa State University. During his Ph.D. he worked on large eddy simulation of turbulent flows with heat transfer. Before he joined the School of Mechanical Engineering at Yonsei University, South Korea as a professor he was Assistant Professor of Mechanical Engineering at Wayne State University, Detroit, Michigan, USA. His research interests include Computational Fluid Dynamics (CFD), complex flows and biological (rheological) flows. Since 2004 he has published more than 40 journal articles collaborating with National Institute of Standard and Technology (NIST), U.S. Army Research Laboratory, Center for Ocean Land Atmosphere Studies, George Mason University and University of Maryland.

Dr. Sasidhar Kondaraju received his B.E. in Mechanical Engineering from Osmania University, Hyderabad with distinction. He finished his M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of nano-particles suspended in fluid medium to observe their effect on heat transfer enhancement in nanofluids. After finishing his Ph.D., he worked for one year as a research associate at the University of Arizona, Tucson, Arizona, USA, and then as a research professor in Yonsei University, Seoul, South Korea for two years. Presently he is an INSPIRE faculty at IIT Delhi.


Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids.Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow. The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems.

Dr. Hassan Farhat received his M.S. in Mechanical Engineering from the Higher Institute of Mechanical and Electrical Engineering, Varna, Bulgaria. He finished a second M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of multiphase and multicomponent fluids as a platform for the study of Colloidal suspensions using the lattice Boltzmann method (LBM). He is currently working as Engineering Specialist in the automotive industry and part time faculty at Wayne State University.Dr. Joon Sang Lee received his B.S., M.S. and Ph.D. in Mechanical Engineering from Iowa State University. During his Ph.D. he worked on large eddy simulation of turbulent flows with heat transfer. Before he joined the School of Mechanical Engineering at Yonsei University, South Korea as a professor he was Assistant Professor of Mechanical Engineering at Wayne State University, Detroit, Michigan, USA. His research interests include Computational Fluid Dynamics (CFD), complex flows and biological (rheological) flows. Since 2004 he has published more than 40 journal articles collaborating with National Institute of Standard and Technology (NIST), U.S. Army Research Laboratory, Center for Ocean Land Atmosphere Studies, George Mason University and University of Maryland.Dr. Sasidhar Kondaraju received his B.E. in Mechanical Engineering from Osmania University, Hyderabad with distinction. He finished his M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of nano-particles suspended in fluid medium to observe their effect on heat transfer enhancement in nanofluids. After finishing his Ph.D., he worked for one year as a research associate at the University of Arizona, Tucson, Arizona, USA, and then as a research professor in Yonsei University, Seoul, South Korea for two years. Presently he is an INSPIRE faculty at IIT Delhi.

Preface.- 1. Introduction.- 2. Overview of Related Studies.- 3. Accelerated Lattice Boltzmann Method.- 4. Hybrid LBM for Surfactant-Covered Droplets.- 5. Suppressing the Coalescence in the LBM: Colloids Rheology.- 6. Non-Uniform Interfacial Tension LBM for RBC Modeling.- Appendix.- References.- Index.

Erscheint lt. Verlag 12.4.2014
Zusatzinfo VIII, 158 p. 91 illus., 88 illus. in color.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Colloidal rheology • colloids • Lattice Boltzmann Method • LBM • Microcolloids • Surfacant-covered droplets
ISBN-10 1-4899-7402-4 / 1489974024
ISBN-13 978-1-4899-7402-0 / 9781489974020
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
45,59
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39