Wavelet Neural Networks (eBook)
264 Seiten
John Wiley & Sons (Verlag)
978-1-118-59629-6 (ISBN)
forecasting using wavelet networks
Wavelet Neural Networks: With Applications in Financial
Engineering, Chaos, and Classification presents the statistical
model identification framework that is needed to successfully apply
wavelet networks as well as extensive comparisons of alternate
methods. Providing a concise and rigorous treatment for
constructing optimal wavelet networks, the book links mathematical
aspects of wavelet network construction to statistical modeling and
forecasting applications in areas such as finance, chaos, and
classification.
The authors ensure that readers obtain a complete understanding
of model identification by providing in-depth coverage of both
model selection and variable significance testing. Featuring an
accessible approach with introductory coverage of the basic
principles of wavelet analysis, Wavelet Neural Networks: With
Applications in Financial Engineering, Chaos, and
Classification also includes:
* Methods that can be easily implemented or adapted by
researchers, academics, and professionals in identification and
modeling for complex nonlinear systems and artificial
intelligence
* Multiple examples and thoroughly explained procedures
with numerous applications ranging from financial modeling and
financial engineering, time series prediction and construction of
confidence and prediction intervals, and classification and chaotic
time series prediction
* An extensive introduction to neural networks that begins
with regression models and builds to more complex frameworks
* Coverage of both the variable selection algorithm and
the model selection algorithm for wavelet networks in addition to
methods for constructing confidence and prediction intervals
Ideal as a textbook for MBA and graduate-level courses in
applied neural network modeling, artificial intelligence, advanced
data analysis, time series, and forecasting in financial
engineering, the book is also useful as a supplement for courses in
informatics, identification and modeling for complex nonlinear
systems, and computational finance. In addition, the book serves as
a valuable reference for researchers and practitioners in the
fields of mathematical modeling, engineering, artificial
intelligence, decision science, neural networks, and finance and
economics.
Antonios K. Alexandridis, PhD, is Lecturer of Finance in the School of Mathematics, Statistics, and Actuarial Science at the University of Kent. Dr. Alexandridis' research interests include financial derivative modeling, pricing and forecasting, machine learning, and neural and wavelet networks. Achilleas D. Zapranis, PhD, is Associate Professor in the Department of Finance and Accounting at the University of Macedonia, where he is also Vice Rector of Economic Planning and Development. In addition, Dr. Zapranis is a member of the Board of Directors of Thessaloniki's Innovation Zone.
Preface
Chapter 1: Machine Learning and Financial Engineering
Chapter 2: Neural Networks
Chapter 3: Wavelet Neural Networks
Chapter 4: Model Selection: Selecting the Architecture of the Network
Chapter 5: Variable Selection: Determining the Explanatory Variables
Chapter 6: Model Adequacy Testing: Determining the Networks Future Performance
Chapter 7: Modeling the Uncertainty: From Point Estimates to Prediction Intervals
Chapter 8: Modeling Financial Temperature Derivatives
Chapter 9: Modeling Financial Wind Derivatives
Chapter 10: Predicting Chaotic Time Series
Chapter 11: Classification of Breast Cancer Cases
Index
Erscheint lt. Verlag | 24.4.2014 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik | |
Technik | |
Schlagworte | Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Finance & Investments • Financial Engineering • Finanztechnik • Finanz- u. Anlagewesen • Mathematics • Mathematik • Neural networks • Neuronale Netze • Neuronales Netz • Wavelet • Wavelets |
ISBN-10 | 1-118-59629-3 / 1118596293 |
ISBN-13 | 978-1-118-59629-6 / 9781118596296 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich