A Probabilistic Theory of Pattern Recognition
Springer-Verlag New York Inc.
978-1-4612-6877-2 (ISBN)
Preface * Introduction * The Bayes Error * Inequalities and alternate
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index
Reihe/Serie | Stochastic Modelling and Applied Probability ; 31 |
---|---|
Zusatzinfo | XV, 638 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 1-4612-6877-X / 146126877X |
ISBN-13 | 978-1-4612-6877-2 / 9781461268772 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich