Classgroups and Hermitian Modules
Birkhauser Boston Inc (Verlag)
978-0-8176-3182-6 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
One advantage of the delay is that the relevant recent work can be included. In a sense this is a companion volume to my recent Springer-Ergebnisse-Bericht, where the Hermitian theory was not dealt with. Our approach is via "Hom-groups", analogous to that followed in recent work on locally free classgroups.
I Preliminaries.- 1 Locally free modules and locally freely presented torsion modules.- 2 Determinants and the Hom language for classgroups.- 3 Supplement at infinity.- II Involution algebras and the Hermitian classgroup.- 1 Involution algebras and duality.- 2 Hermitian modules.- 3 Pfaffians of matrices.- 4 Pfaffians of algebras.- 5 Discriminants and the Hermitian classgroup.- 6 Some homomorphisms.- 7 Pulling back discriminants.- 8 Unimodular modules.- 8 Products.- III Indecomposable involution algebras.- 1 Dictionary.- 2 The map P.- 3 Discriminants once more.- 4 Norms of automorphisms.- 5 Unimodular classes once more.- IV Change of order.- 1 Going up.- 2 Going down.- V Groups.- 1 Characters.- 2 Character action. Ordinary theory.- 3 Character action. Hermitian theory.- 4 Special formulae.- 5 Special properties of the group ring involution.- 6 Some Frobenius modules.- 7 Some subgroups of the adelic Hermitian classgroup.- VI Applications in arithmetic.- 1 Local theory.- 2 The global discriminant.- Literature.- List of Theorems.- Some further notation.
Erscheint lt. Verlag | 1.1.1984 |
---|---|
Reihe/Serie | Progress in Mathematics ; 48 |
Zusatzinfo | biography |
Verlagsort | Secaucus |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 530 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8176-3182-8 / 0817631828 |
ISBN-13 | 978-0-8176-3182-6 / 9780817631826 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich