Rational Points - Gerd Faltings, Gisbert Wüstholz

Rational Points

Seminar Bonn/Wuppertal 1983/84
Buch | Softcover
XI, 312 Seiten
2013 | 3rd ed. 1992. Softcover reprint of the original 3rd ed. 1992
Vieweg & Teubner (Verlag)
978-3-322-80342-9 (ISBN)
53,49 inkl. MwSt
This book consists of the notes from the seminar Bonn/ Wuppertal 1983/ 84 on Arithmetic Geometry. It contains a proof for the Mordell conjecture and may be useful as an introduction to Arakelov's point of view in diophantine geometry. The third edition includes an appendix in which a detailed survey on the spectacular recent developments in arithmetic algebraic geometry is given. These beautiful new results have their roots in the material covered by this book.

Prof. Dr. Gisbert Wüstholz ist Professor für Mathematik an der ETH Zürich.

I: Moduli Spaces.-
1 Introduction.-
2 Generalities about moduli spaces.-
3 Examples.-
4 Metrics with logarithmic singularities.-
5 The minimal compactification of Ag/?.-
8 The toroidal compactification.- II: Heights.-
1 The definition.-
2 Néron-Tate heights.-
3 Heights on the moduli space.-
4 Applications.- III: Some Facts from the Theory of Group Schemes.-
0 Introduction.-
1 Generalities on group schemes.-
2 Finite group schemes.-
3 p-divisible groups.-
4 A theorem of Raynaud.-
5 A theorem of Tate.- IV: Tate's Conjecture on the Endomorphisms of Abelian Varieties.-
1 Statements.-
2 Reductions.-
3 Heights.-
4 Variants.- V: The Finiteness Theorems of Faltings.-
1 Introduction.-
2 The finiteness theorem for isogeny classes.-
3 The finiteness theorem for isomorphism classes.-
4 Proof of Mordell's conjecture.-
5 Siegel's Theorem on integer points.- VI: Complements to Mordell.-
1 Introduction.-
2 Preliminaries.-
3 The Tate conjecture.-
4 The Shafarevich conjecture.-
5 Endomorphisms.-
6 Effectivity.- VII: Intersection Theory on Arithmetic Surfaces.-
0 Introduction.-
1 Hermitian line bundles.-
2 Arakelov divisors and intersection theory.-
3 Volume forms on IR?(X, ?).-
4 Riemann Roch.-
5 The Hodge index theorem.- Appendix: New Developments in Diophantine and Arithmetic Algebraic Geometry (Gisbert Wüstholz).-
2 The transcendental approach.-
3 Vojta's approach.-
4 Arithmetic Riemann-Roch Theorem.-
5 Applications in Arithmetic.-
6 Small sections.-
7 Vojta's proof in the number field case.-
8 Lang's conjecture.-
9 Proof of Faltings' theorem.-
10 An elementary proof of Mordell's conjecture.-
11 ?-adic representations attached to abelian varieties.

Erscheint lt. Verlag 20.11.2013
Reihe/Serie Aspects of Mathematics
Zusatzinfo XI, 312 p.
Verlagsort Wiesbaden
Sprache englisch
Maße 162 x 229 mm
Gewicht 507 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Algebra • Algebraic Geometry • arithmetic • Arithmetic Geometry • diophantine geometry • Finite • Geometry • Mordell conjecture • Morphism • Proof • Theorem
ISBN-10 3-322-80342-2 / 3322803422
ISBN-13 978-3-322-80342-9 / 9783322803429
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich