Finite Sample Analysis in Quantum Estimation
Seiten
In this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks.
The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable.
The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable.
Dr. Takanori Sugiyama Department of Physics, Graduate School of Science, The University of Tokyo
Introduction.- Quantum Mechanics and Quantum Estimation — Background and Problems in Quantum Estimation.- Mathematical Statistics — Basic Concepts and Theoretical Tools for Finite Sample Analysis.- Evaluation of Estimation Precision in Test of Bell-type Correlations.- Evaluation of Estimation Precision in Quantum Tomography.- Improvement of Estimation Precision by Adaptive Design of Experiments.- Summary and Outlook.
Reihe/Serie | Springer Theses |
---|---|
Zusatzinfo | 11 Illustrations, color; 3 Illustrations, black and white; XII, 118 p. 14 illus., 11 illus. in color. |
Verlagsort | Tokyo |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
ISBN-10 | 4-431-54776-2 / 4431547762 |
ISBN-13 | 978-4-431-54776-1 / 9784431547761 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
29,99 €
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99 €
Eine Einführung mit Java
Buch | Hardcover (2020)
dpunkt (Verlag)
44,90 €