Numerical Data Fitting in Dynamical Systems - Klaus Schittkowski

Numerical Data Fitting in Dynamical Systems

A Practical Introduction with Applications and Software
Buch | Softcover
396 Seiten
2013
Springer-Verlag New York Inc.
978-1-4757-6050-7 (ISBN)
320,99 inkl. MwSt
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.

1 Introduction.- 2 Mathematical Foundations.- 3 Data Fitting Models.- 4 Numerical Experiments.- 5 Case Studies.- Appendix A: Software Installation.- 1 Hardware and Software Requirements.- 2 System Setup.- 3 Packing List.- Appendix B: Test Examples.- 1 Explicit Model Functions.- 2 Laplace Transforms.- 3 Steady State Equations.- 4 Ordinary Differential Equations.- 5 Differential Algebraic Equations.- 6 Partial Differential Equations.- 7 Partial Differential Algebraic Equations.- Appendix C: The PCOMP Language.- Appendix D: Generation of Fortran Code.- 1 Model Equations.- 1.1 Input of Explicit Model Functions.- 1.2 Input of Laplace Transformations.- 1.3 Input of Systems of Steady State Equations.- 1.4 Input of Ordinary Differential Equations.- 1.5 Input of Differential Algebraic Equations.- 1.6 Input of Time-Dependent Partial Differential Equations.- 1.7 Input of Partial Differential Algebraic Equations.- 2 Execution of Generated Code.- References.

Reihe/Serie Applied Optimization ; 77
Zusatzinfo 42 Illustrations, black and white; XII, 396 p. 42 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4757-6050-7 / 1475760507
ISBN-13 978-1-4757-6050-7 / 9781475760507
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00