ThesearetheproceedingsofCaLC2001,the?rstconferencedevotedtocr- tographyandlattices. Wehavelongbelievedthattheimportanceoflattices andlatticereductionincryptography,bothforcryptographicconstructionand cryptographicanalysis,meritsagatheringdevotedtothistopic. Theenthusiastic responsethatwereceivedfromtheprogramcommittee,theinvitedspeakers,the manypeoplewhosubmittedpapers,andthe90registeredparticipantsamply con?rmedthewidespreadinterestinlatticesandtheircryptographicappli- tions. WethankeveryonewhoseinvolvementmadeCaLCsuchasuccessfulevent; inparticularwethankNatalieJohnson,LarryLarrivee,DoreenPappas,andthe BrownUniversityMathematicsDepartmentfortheirassistanceandsupport. March2001 Je?reyHo?stein,JillPipher,JosephSilverman VI Preface Organization CaLC2001wasorganizedbytheDepartmentofMathematicsatBrownUniv- sity. Theprogramchairsexpresstheirthankstotheprogramcommiteeandthe additionalexternalrefereesfortheirhelpinselectingthepapersforCaLC2001. TheprogramchairswouldalsoliketothankNTRUCryptosystemsforproviding ?nancialsupportfortheconference. Program Commitee DonCoppersmith IBMResearch Je?reyHo?stein(co-chair), BrownUniversityandNTRUCryptosystems ArjenLenstra Citibank,USA PhongNguyen ENS AndrewOdlyzko AT&TLabsResearch JosephH. Silverman(co-chair), BrownUniversityandNTRUCryptosystems External Referees AliAkhavi,GlennDurfee,NickHowgrave-Graham,DanieleMicciancio Sponsoring Institutions NTRUCryptosystems,Inc. ,Burlington,MA Table of Contents An Overveiw of the Sieve Algorithm forthe Shortest Lattice Vector Problem 1 Miklos Ajtai, Ravi Kumar, and Dandapani Sivakumar Low Secret Exponent RSA Revisited ::::::::::::::::::::::::::::::::: 4 Johannes Bl omer and Alexander May Finding Small Solutions to Small Degree Polynomials::::::::::::::::::: 20 Don Coppersmith Fast Reduction of Ternary Quadratic Forms::::::::::::::::::::::::::: 32 Friedrich Eisenbrand and Gunt er Rote Factoring Polynomialsand 0-1 Vectors:::::::::::::::::::::::::::::::: 45 Mark van Hoeij Approximate Integer Common Divisors::::::::::::::::::::::::::::::: 51 Nick Howgrave-Graham Segment LLL-Reduction of Lattice Bases ::::::::::::::::::::::::::::: 67 Henrik Koy and Claus Peter Schnorr Segment LLL-Reduction with Floating Point Orthogonalization:::::::::: 81 Henrik Koy and Claus Peter Schnorr TheInsecurity ofNyberg-Rueppel andOther DSA-LikeSignatureSchemes with Partially Known Nonces:::::::::::::::::::::::::::::::::::::::: 97 Edwin El Mahassni, Phong Q. Nguyen, and Igor E. Shparlinski Dimension Reduction Methods for Convolution Modular Lattices :::::::: 110 Alexander May and Joseph H. Silverman Improving Lattice Based Cryptosystems Using the Hermite Normal Form : 126 Daniele Micciancio The Two Faces of Lattices in Cryptology:::::::::::::::::::::::::::::: 146 Phong Q.
An Overview of the Sieve Algorithm for the Shortest Lattice Vector Problem.- Low Secret Exponent RSA Revisited.- Finding Small Solutions to Small Degree Polynomials.- Fast Reduction of Ternary Quadratic Forms.- Factoring Polynomials and 0-1 Vectors.- Approximate Integer Common Divisors.- Segment LLL-Reduction of Lattice Bases.- Segment LLL-Reduction with Floating Point Orthogonalization.- The Insecurity of Nyberg-Rueppel and Other DSA-Like Signature Schemes with Partially Known Nonces.- Dimension Reduction Methods for Convolution Modular Lattices.- Improving Lattice Based Cryptosystems Using the Hermite Normal Form.- The Two Faces of Lattices in Cryptology.- A 3-Dimensional Lattice Reduction Algorithm.- The Shortest Vector Problem in Lattices with Many Cycles.- Multisequence Synthesis over an Integral Domain.
Erscheint lt. Verlag |
15.8.2001
|
Reihe/Serie |
Lecture Notes in Computer Science
|
Zusatzinfo |
VIII, 224 p. |
Verlagsort |
Berlin |
Sprache |
englisch |
Maße |
155 x 235 mm |
Gewicht |
331 g |
Themenwelt
|
Informatik ► Theorie / Studium ► Kryptologie |
Schlagworte |
Algorithm analysis and problem complexity • algorithms • Computational Algebra • cryptography • Cryptology • digital signature schemes • Factorization • finite structures • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • latice structures • lattice-based cryptosystems • lattice reduction • lattices • Nonce • polynomials • SIGNATUR |
ISBN-10 |
3-540-42488-1 / 3540424881 |
ISBN-13 |
978-3-540-42488-8 / 9783540424888 |
Zustand |
Neuware |