Cohomological Methods in Homotopy Theory
Springer Basel (Verlag)
978-3-0348-9513-2 (ISBN)
Etale approximations and the mod l cohomology of GLn.- On the Hurewicz map and Postnikov invariants of K?.- Recognition principle for generalized Eilenberg-Mac Lane spaces.- Groups with infinite homology.- Unstable splittings related to Brown-Peterson cohomology.- Stripping and splitting decorated mapping class groups.- Loop spaces of configuration spaces, braid-like groups, and knots.- On the homotopy type of infinite stunted projective spaces.- Stable splittings of ?SU(n).- Structure of mod p H-spaces with finiteness conditions.- Composition methods in the homotopy groups of ring spectra.- Tate cohomology in axiomatic stable homotopy theory.- Serre's theorem and the Nill filtration of Lionel Schwartz.- New relationships among loopspaces, symmetric products, and Eilenberg MacLane spaces.- Chern characters for the equivariant K-theory of proper G-CW-complexes.- The Thomified Eilenberg-Moore spectral sequence.- On the classifying space for proper actions.- Toric morphisms between p-compact groups.- On the vanishing of certain K-theory Nil-groups.- Lusternik-Schnirelmann cocategory: A Whitehead dual approach.- Rational self-equivalences for H-spaces.- Cellular approximations using Moore spaces.- Configuration spaces with summable labels.- Kaleidoscoping Lusternik-Schnirelmann category type invariants.- Essential category weight and phantom maps.
Erscheint lt. Verlag | 21.10.2012 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | VII, 415 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 643 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | algebraic topology • cohomology • group theory • Homology • Homotopy • homotopy theory • K-theory |
ISBN-10 | 3-0348-9513-5 / 3034895135 |
ISBN-13 | 978-3-0348-9513-2 / 9783034895132 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich