Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-642-40934-9 (ISBN)
Editors' Introduction.- Learning and Optimizing with Preferences.- Efficient Algorithms for Combinatorial Online Prediction.- Exact Learning from Membership Queries: Some Techniques, Results and New Directions.- Online Learning Universal Algorithm for Trading in Stock Market Based on the Method of Calibration.- Combinatorial Online Prediction via Metarounding.- On Competitive Recommendations.- Online PCA with Optimal Regrets.- Inductive Inference and Grammatical Inference Partial Learning of Recursively Enumerable Languages.- Topological Separations in Inductive Inference.- PAC Learning of Some Subclasses of Context-Free Grammars with Basic Distributional Properties from Positive Data.- Universal Knowledge-Seeking Agents for Stochastic Environments.- Teaching and Learning from Queries Order Compression Schemes.- Learning a Bounded-Degree Tree Using Separator Queries.- Faster Hoeffding Racing: Bernstein Races via Jackknife Estimates.- Robust Risk-Averse Stochastic Multi-armed Bandits.- An Efficient Algorithm for Learning with Semi-bandit Feedback.- Differentially-Private Learning of Low Dimensional Manifolds.- Generalization and Robustness of Batched Weighted Average Algorithm with V-Geometrically Ergodic Markov Data.- Adaptive Metric Dimensionality Reduction.- Dimension-Adaptive Bounds on Compressive FLD Classification.- Bayesian Methods for Low-Rank Matrix Estimation: Short Survey and Theoretical Study.- Concentration and Confidence for Discrete Bayesian Sequence Predictors.- Algorithmic Connections between Active Learning and Stochastic Convex Optimization.- Unsupervised/Semi-Supervised Learning Unsupervised Model-Free Representation Learning.- Fast Spectral Clustering via the Nyström Method.- Nonparametric Multiple Change Point Estimation in Highly Dependent Time Series.
Erscheint lt. Verlag | 11.9.2013 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XVIII, 397 p. 30 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 635 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • combinatorial optimization • gradient algorithms • Online Learning • Reinforcement Learning • universal artificial intelligence |
ISBN-10 | 3-642-40934-2 / 3642409342 |
ISBN-13 | 978-3-642-40934-9 / 9783642409349 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich