Methods of Algebraic Geometry in Control Theory: Part I - Peter Falb

Methods of Algebraic Geometry in Control Theory: Part I

Scalar Linear Systems and Affine Algebraic Geometry

(Autor)

Buch | Softcover
204 Seiten
2012 | Softcover reprint of the original 1st ed. 1990
Birkhauser Boston Inc (Verlag)
978-1-4684-9223-1 (ISBN)
106,99 inkl. MwSt
Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic!) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).

0. Introduction.- 1. Scalar Linear Systems over the Complex Numbers.- 2. Scalar Linear Systems over a Field k.- 3. Factoring Polynomials.- 4. Affine Algebraic Geometry: Algebraic Sets.- 5. Affine Algebraic Geometry: The Hilbert Theorems.- 6. Affine Algebraic Geometry: Irreducibility.- 7. Affine Algebraic Geometry: Regular Functions and Morphisms I.- 8. The Laurent Isomorphism Theorem.- 9. Affine Algebraic Geometry: Regular Functions and Morphisms II.- 10. The State Space: Realizations.- 11. The State Space: Controllability, Observability, Equivalence.- 12. Affine Algebraic Geometry: Products, Graphs and Projections.- 13. Group Actions, Equivalence and Invariants.- 14. The Geometric Quotient Theorem: Introduction.- 15. The Geometric Quotient Theorem: Closed Orbits.- 16. Affine Algebraic Geometry: Dimension.- 17. The Geometric Quotient Theorem: Open on Invariant Sets.- 18. Affine Algebraic Geometry: Fibers of Morphisms.- 19. The Geometric Quotient Theorem: The Ring of Invariants.- 20. Affine Algebraic Geometry: Simple Points.- 21. Feedback and the Pole Placement Theorem.- 22. Affine Algebraic Geometry: Varieties.- 23. Interlude.- Appendix A: Tensor Products.- Appendix B: Actions of Reductive Groups.- Appendix C: Symmetric Functions and Symmetric Group Actions.- Appendix D: Derivations and Separability.- Problems.- References.

Erscheint lt. Verlag 12.6.2012
Reihe/Serie Systems & Control: Foundations & Applications ; 4
Zusatzinfo VIII, 204 p.
Verlagsort Secaucus
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4684-9223-3 / 1468492233
ISBN-13 978-1-4684-9223-1 / 9781468492231
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00