Connectionist Speech Recognition - Hervé A. Bourlard, Nelson Morgan

Connectionist Speech Recognition

A Hybrid Approach
Buch | Softcover
313 Seiten
2012
Springer-Verlag New York Inc.
978-1-4613-6409-2 (ISBN)
213,99 inkl. MwSt
Connectionist Speech Recognition: A Hybrid Approach describes the theory and implementation of a method to incorporate neural network approaches into state of the art continuous speech recognition systems based on hidden Markov models (HMMs) to improve their performance. In this framework, neural networks (and in particular, multilayer perceptrons or MLPs) have been restricted to well-defined subtasks of the whole system, i.e. HMM emission probability estimation and feature extraction.
The book describes a successful five-year international collaboration between the authors. The lessons learned form a case study that demonstrates how hybrid systems can be developed to combine neural networks with more traditional statistical approaches. The book illustrates both the advantages and limitations of neural networks in the framework of a statistical systems.
Using standard databases and comparison with some conventional approaches, it is shown that MLP probability estimation can improve recognition performance. Other approaches are discussed, though there is no such unequivocal experimental result for these methods.
Connectionist Speech Recognition is of use to anyone intending to use neural networks for speech recognition or within the framework provided by an existing successful statistical approach. This includes research and development groups working in the field of speech recognition, both with standard and neural network approaches, as well as other pattern recognition and/or neural network researchers. The book is also suitable as a text for advanced courses on neural networks or speech processing.

1 Introduction.- 2 Statistical Pattern Classification.- 3 Hidden Markov Models.- 4 Multilayer Perceptrons.- 5 Speech Recognition Using ANNs.- 6 Statistical Inference in MLPs.- 7 The Hybrid HMM/MLP Approach.- 8 Experimental Systems.- 9 Context-Dependent MLPs.- 10 System Tradeoffs.- 11 Training Hardware and Software.- 12 Cross-Validation In Mlp Training.- 13 Hmm/Mlp And Predictive Models.- 14 Feature Extraction By Mlp.- 15 Final System Overview.- 16 Conclusions.- Acronyms.

Erscheint lt. Verlag 15.12.2012
Reihe/Serie The Springer International Series in Engineering and Computer Science ; 247
Zusatzinfo XXIX, 313 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4613-6409-4 / 1461364094
ISBN-13 978-1-4613-6409-2 / 9781461364092
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
Grundlagen und formale Methoden

von Uwe Kastens; Hans Kleine Büning

Buch | Hardcover (2021)
Hanser, Carl (Verlag)
29,99