The Strange Logic of Random Graphs
Springer Berlin (Verlag)
978-3-540-41654-8 (ISBN)
The book will be of interest to graduate students and researchers in discrete mathematics.
JOEL H. SPENCER, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is also a Sloane Foundation Fellow.
I. Beginnings.- 0. Two Starting Examples.- 1. Preliminaries.- 2. The Ehrenfeucht Game.- II. Random Graphs.- 3. Very Sparse Graphs.- 4. The Combinatorics of Rooted Graphs.- 5. The Janson Inequality.- 6. The Main Theorem.- 7. Countable Models.- 8. Near Rational Powers of n.- III. Extras.- 9. A Dynamic View.- 10. Strings.- 11. Stronger Logics.- 12. Three Final Examples.
From the reviews of the first edition:
"The author ... is a leading expert in random graph theory, and reputed for his expository style. His recent book is again a well-written and exciting text, which I warmly recommend to researchers and graduate students interested in the subject. ... The book has a clear and vivid style, and the material is essentially self-contained, so it is very well-suited for self-study." (Péter Mester, Acta Scientiarum Mathematicarum, Vol. 69, 2003)
"This beautifully written book deals with the fascinating world of random graphs, using a nice blend of techniques coming from combinatorics, probability and mathematical logic, while keeping the treatment self-contained." (Alessandro Berarducci, Mathematical Reviews, Issue 2003 d)
Erscheint lt. Verlag | 20.6.2001 |
---|---|
Reihe/Serie | Algorithms and Combinatorics |
Zusatzinfo | X, 168 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 392 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | combinatorics • Graph • Graphentheorie • graph theory • Kombinatorik • Logic • Mathematical Logic • Mathematische Logik • Probability • Random Graphs |
ISBN-10 | 3-540-41654-4 / 3540416544 |
ISBN-13 | 978-3-540-41654-8 / 9783540416548 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich